Rjadlo Shaek Eleiren Dollars and Ninety-Five Centsm!
Cat. No. 62-2085 '

f
|

r
g i A e

S e —— ————

DATA FILE
PROGRAMMING IN BASIC

DATA FILE
PROGRAMMING IN BASIC

LEROY FINKEL
San Carlos High School

and

JERALD R. BROWN

FEducational Consultant

John Wiley & Sons, Inc.

New York o Chichester ¢ Brisbane ¢ Toronto

Publisher: Judy V. Wilson
Editors: Dianne Littwin and Karen Hess
Composition and Make-up: Trotta Composition

Copyright © 1981, by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work
beyond that permitted by Sections 107 or 108 of the 1976
United States Copyright Act without the permission of

the copyright owner is unlawful. Requests for permission
or further information should be addressed to the
Permissions Department, John Wiley & Sons, Inc.

Library of Congress Cataloging in Publication Data

Finkel, LeRoy.
Data files programming BASIC.

(Wiley Self-Teaching Guides)

Includes index.

1. Basic (Computer program language) — Programmed
instruction. 2. File organization (Computer science) —
Programmed instruction. 1. Brown, Jerald, joint author.

II. Title.
QA76.73.B3F53 001.6424 80-39790
ISBN 0-471-08333-X

Printed in the United States of America

81 82 10987654321

v

How To Use This Book

When you use the self-instruction format in this book, you will be actively involved in
learning data file programming in BASIC. Most of the material is presented in sections
called frames, each of which teaches you something new or provides practice. Each
frame also gives you questions to answer or asks you to write a program or program
segment.

You will learn best if you actually write out the answers and try the programs on
your computer. The questions are carefully designed to call your attention to impor-
tant points in the examples and explanations, and to help you apply what is being
explained or demonstrated. We cannot urge you too strongly to really “fill in the
blanks” for rapid and accurate learning.

Each chapter begins with a list of objectives — what you will be able to do after
completing that chapter. At the end of each chapter is a self-test to provide valuable
practice.

The self-tests do triple duty. They can be used as a review of the material covered in
the chapter. Or you can read and work through a chapter, take a break, and save the
self-test as a review before you begin the next chapter. The self-tests also provide
valuable practice, for maximum retention of the material learned. Starting with the
Chapter Four Self-test, you are asked to write programs that can be used to either create
data files or display the contents of data files. These data files are then used by other
programs in later chapters, so please don’t skip the self-tests! At the end of the book is a
final self-test to assess your overall understanding of data file programming. You will
find it easy, if you have worked through this self-instruction format without skipping
over the practice programs.

Instructors will find this book to be an excellent text for intermediate or advanced
courses in BASIC programming at the high school and college levels, as well as for
computer center classes, university extension workshops, and in-house instructional
settings.

This book is designed to be used with a computer close at hand. What you learn
will be theoretical only until you actually sit down at a computer and apply your
knowledge “hands-on.” We strongly recommend that you and this book get together
with a computer! Learning data file programming in BASIC will be easier and clearer
if you have regular access to a computer so you can try the examples and exercises,

make your own modifications, and invent programs for your own purposes. You are
now ready to use data files in BASIC.

Preface

This text will teach you to program data files in BASIC. As a prerequisite to its use,
you should have already completed an introductory course or book in BASIC pro-
gramming and be able to read program listings and write simple programs: This is

not a book for the absolute novice in BASIC. You should already be comfortable
writing your own programs that use statements including string variables, string
functions, and arrays. We do start the book with a review of statements that you
already know, though we cover them in more depth and show you new ways to use
them.

The book is designed for use by readers who have little or no experience using data
files in BASIC (or elsewhere, for that matter). We take you slowly and carefully
through experiences that “teach by doing.” You will be asked to complete many
programs and program segments. By doing so, you will learn the essentials and a lot
more. If you already have data file experience, you can use this book to learn about
data files in more depth.

The particular data files explained in this text are for the Radio Shack TRS-80
computer Model I and Model I11, with one or more disk drives or else a cassette recorder.
Data file programming in other versions of BASIC will be similar, but not identical, to
those taught in this book. You will find this book most useful when used in conjunction
with. the appropriate reference materials for your computer system.

Data files are used to store quantities of information that you may want to use
now and later; for example, mailing addresses, numeric or statistical information, or
tax and bookkeeping data. The examples presented in this book will help you use
files for home applications, for home business applications, and for your smalil
business or profession. When you have completed this book, you will be able to
write your own programs, modify programs purchased from commercial sources, and
adapt programs using data files that you find in magazines and other sources.

vii

Contents

How To Use This Book v
Preface vii
Chapter 1 Writing BASIC Programs for Clarity, Readability,

and Logic 1
Chapter 2 An Important Review of BASIC Statements 18
Chapter 3 Building Data Entry and Error Checking Routines 55
Chapter 4 Creating and Reading Back Sequential Data Files 84
Chapter § Sequential Data File Utility Programs 135
Chapter 6 Cassette Tape Data Files 195
Chapter 7 Random Access Data Files 224
Chapter 8 Random Access File Applications 267

Final Self-Test 285
Appendix A Basic Reference Guide for Statement Introduced 297

in this Book
Appendix B ASCII Chart 299
Appendix C List of Data File Example Programs 301
Index 305

CHAPTER ONE

Writing BASIC Programs for
Clarity, Readability, and Logic

Objectives: When you have completed this chapter you will be able to:

describe how a program can be written using a top-to-bottom format.
write an introductory module using REMARK statements.

describe six prettyprinting rules.

describe seven rules to write programs that save memory space.

.;:.mw:—-‘

INTRODUCTION

This text will teach you to use data files in BASIC. You should have already com-
pleted an introductory course or book in BASIC programming, and be able to read
program listings and write simple programs.. This is not a book for the absclute novice
in BASIC, but is for those who have never used data files in BASIC (or elsewhere, for
that matter). The particular data files explained in this text are for TRS-80 BASIC and
MICROSOFT BASIC.

Data files in other versions of BASIC will be similar, but not identical, to those
taught in this book. You will find this book most useful when used in conjunction
with the reference manual for your computer system.

Since it is assumed you have some knowledge of programming in BASIC and have
practiced by writing small programs, the next step is for you to begin thinking about
program organization and clarity. Because data file programs can become fairly large
and complex, the inevitable debugging process — making the program actually work
— can be proportionately complex. Therefore, this chapter is important to you be-
cause it provides some program organization methods to help make your future
programming easier.

2 DATA FILE PROGRAMMING IN BASIC

THE BASIC LANGUAGE

The computer language called BASIC was developed at Dartmouth College in the early
1960s. 1t was intended for use by people with little or no previous computer experi-
ence who were not necessarily adept at mathematics. The original language syntax
included only those functions that a beginner would need. As other colleges, computer
manufacturers, and institutions began to adopt BASIC, they added embellishments to
meet their own needs. Soon BASIC grew in syntax to what various sources called
Extended BASIC, Expanded BASIC, SUPERBASIC, XBASIC, BASIC PLUS, and so on.
Finally, in 1978 an industry standard was developed for BASIC, but that standard was
for only a “minimal BASIC,” as defined by the American National Standards Institute
(ANSI). Despite the ANSI standard, today we have a plethora of different BASIC
languages, most of which “look alike,” but each with its own special characteristics
and quirks.

In the microcomputer field, the most widely used versions of BASIC were
developed by the Microsoft Company and are generally referred to as MICROSOFT
BASIC. These BASICs are available on a variety of microcomputers but, unfortunately,
the language is implemented differently on each computer system. Microsoft also sells
its own version of BASIC, called BASIC-80, useable on many microcomputers.

The programs and runs shown in the main text were actually performed by a
Radio Shack TRS-80 with DOS and disk BASIC. Where possible, we used only those
language features that appear to be common in ALL versions of MICROSOFT BASIC.
We have also tried to use BASIC language features common to all versions of BASIC,
regardless of manufacturer. We did not attempt to show off all the bells and whistles
found in MICROSOFT BASIC, but rather, to present easy-to-understand programs that
will run on or be easily adapted to a variety of computers.

THE BASIC LANGUAGE YOU SHOULD USE
Conservative Programming

Since you will now be writing longer and more complex programs, you should adopt
conservative programming techniques so that errors will be easier to isolate and locate.
(Yes, you will still make errors. We all do!) This means that you should NOT use
all the fanciest features available in your version of BASIC until you have tested the
features to be sure they work the way you think they work. Even then, you still
might decide against using your fancy features, many of which relate to printing or
graphic output and do not work the same on other computers. Some might be

WRITING BASIC PROGRAMS FOR CLARITY, READABILITY, AND LOGIC 3

special functions that simply do not exist on other computers. Leave them out of
your programs unless you feel you must include them.

We have found that not all software (BASIC) features work EXACTLY as
described in the manufacturer’s reference materials, or that the description may be
subject to misinterpretation. Thus, the more conservative your programming tech-
niques, the less chance there is of running into a software ‘glitch.” This chapter
discusses a program format that, in itself, is a conservative programming technique.

One reason for conservative programming is that your programs will be more
portable or transportable to other computers. “Why should I care about portability?”
you ask: Perhaps the most important reason is that you will want to trade programs
with friends. But do all of your friends have a computer IDENTICAL to yours?
Unless they do, they will probably be unable to use your programs without modifying
them. Conservative programming techniques will minimize the number of changes
required.

Portability is also important for your own convenience. The computer you use
or own today may not be the one you will use one year from now, or you may en-
hance your system. In order to use today’s programs on tomorrow’s computer be
conservative in your programming.

Use conservative programming to:

e Isolate and locate errors more easily.
e Avoid software “glitch.”
o Enhance portability.

WRITING READABLE PROGRAMS

Look at the sample programs throughout this book and you will see that they are easy
to read and understand because the programs and the individual statements are written
in simple, straight-line BASIC code without fancy methodology or language syntax. It
is as if the statements are written with the READER rather than the computer in mind.

Writing readable BASIC programs requires thinking ahead, planning your program
in a logical flow, and using a few special formats that make the program listing easier
to the eye. If you plan to program for a living, you may find yourself bound by your
employer’s programming style. However, if you program for pleasure, adding readable
style to your programs will make them that much easier to debug or change later, not
to mention the pride inherent in trading a clean, readable program to someone else.

A readable programming style provides its own documentation. Such self-
documentation is not only pleasing to the eye, it provides the reader/user with suffi-
cient information to understand exactly how the program works. This style is not as
precise as “structured programming,” though we have borrowed features usually
promoted by structured programming enthusiasts. Qur format organizes programs in
MODULES, each module containing one major function or program activity. We also
include techniques long accepted as good programming, but for some reason forgotten
in recent years. Most of our suggestions do NOT save memory space or speed up the
program run. Rather, readability is our primary concern, at the expense of memory

4 DATA FILE PROGRAMMING IN BASIC

space. Later in this chapter, we will show some procedures to shorten and speed up
your programs. Modular style programs will usually be better running programs and
will effectively communicate your thought processes to a reader.

THE TOP-TO-BOTTOM ORGANIZATION

When planning your program, think in terms of major program functions. These might
include some or all of the functions from this list:

DATA ENTRY

DATA ANALYSIS
COMPUTATION

FILE UPDATE
EDITING

REPORT GENERATION

Using our modular process, divide your program into modules, each containing
one of these functions. Your program should flow from module one to module two
and continue to the next higher numbered module. This “top-to-bottom organiza-
tion” makes your program easy to follow. Program modules might be broken up into
smaller “blocks”, each containing one procedure or computation. The size or scope of
a program block within a module is determined by the programmer and the task to be
accomplished. Block style will vary from person to person, and perhaps from program
to program.

USE A MODULAR FORMAT AND TOP-TO-BOTTOM APPROACH

REMARK Statements

Separate program modules and blocks from each other by REMARK statements or
blank program lines. Since blank numbered lines are eliminated by many BASICs
when the program is listed, test your version of BASIC to see how blank lines are
printed in a listing. In general, programs designed for readability make liberal use of
REMARK statements, but do not be overzealous. A blank line (or nearly blank) can
be induced using an apostrophe (°) as a substitute for the word REMARK, or by
merely typing a line number followed by a colon (:). A line number followed by
REM (e.g., 150 REM) can also be used. Experiment with your computer to see what
works.

WRITING BASIC PROGRAMS FOR CLARITY, READABILITY, AND LOGIC 5

100 REMARK DATA ENTRY MODULE

110 REMARK **** READ DATA FROM DATA STATEMENTS 9000-9090
120 '

130 :

140 REM

190 °
200 REMARK COMPUTATION MODULE

Begin each program module, block, or subroutine with an explanatory REMARK
and end it with a blank line or blank REMARK statement indicating the end (see line
190 above).

Consistency in your use of REMARKSs enhances readability. Use REM or
REMARK, but be consistent. Use an apostrophe or colon consistently. Some wiiters
use the **** shown in line 110 above to set off REMARK statements containing
comments from other REMARK statements; others use spaces four to six places after
the REMARK before they add a comment (line 100). Both formats effectively
separate REMARK comments from BASIC code.

You can place remarks on the same line as BASIC code using multiple statement
lines, but be sure your REMARK is the LAST statement on the line. Such “on-line”
remarks can be used to explain what a particular statement is doing. A common
practice is to leave considerable space between an on-line remark and the BASIC code,
as shown in line 240 below.

220 LET C(X) = C(X) + U: REM***COUNT UNITS IN C ARRAY
240 LET T(X) = T(X) + C(X): REM¥**INCREASE TOTAL ARRAY

Liberal use of REMARK statements to separate program modules and blocks is
desirable. Using REMARKSs to explain what the program is doing is also desirable,
but don’t be overzealous or simplistic (LET C = A + B does not require a REMARK
or explanation!). REM should add information, not merely state an obvious step.

Like everything else said in these first chapters, there will be exceptions to
what we say here. Keep in mind that we are trying to get you to think through your
programming techniques and formats a little more than you are probably accustomed
to doing. Thus, our suggested “rules” are just that — suggestions to which there will
be exceptions.

GOTO STATEMENTS

Perhaps the most controversial statement in the BASIC language is the unconditional
GOTO statement. Its use and abuse causes more controversy than any other statement.
Purists say you would NEVER use an unconditional GOTO statement such as GOTO
100. A more realistic approach suggests that all GOTOs and GOSUBs go DOWN the
page to a line number larger than the line number where the GOTO or GOSUB appears.
This is consistent with the “top-to-bottom” program organization. This same ap-
proach, down the page, also applies to using IF. . .THEN statements (there will be
obvious exceptions to this rule).

6 DATA FILE PROGRAMMING IN BASIC

140 GOTO 210
150 IF X < Y THEN 800
160 GOSUB 8000

A final suggestion: A GOTO, GOSUB, or IF. . .THEN should not go to a state-
ment containing only a REMARK. If you or the next user of your program run short
of memory space you will delete extra REMARK statements. This, in turn, requires
you to change all your GOTOs line numbers, so plan ahead first. Not all BASICs even
allow a program to branch to a statement starting with REM.

Bad Good
150 GOTO 300 150 GOTO 300
300 REM DATA ENTRY 299 REM DATA ENTRY

310 LINE INPUT "NAME";N$ 300 LINE INPUT "NAME" ;NS

A FORMAT FOR THE INTRODUCTORY MODULE

The first module of BASIC code (lines 100 through 199 or 1000 through 1999)
should contain a brief description of the program, user instructions when needed, a
list of all variables used, and the initialization of constants, variables, and arrays.

The very first program statement should be a REMARK statement containing
the program name. Carefully choose a name that tells the reader what the program
does, not just a randomly selected name. After the program’s name comes the author
or programmer’s name and the date. For the benefit of someone else who may like
to use your program, include a REMARK describing the computer system and/or
software system used when writing the program. Whenever the program is altered or
updated, the opening remarks should reflect the change.

100 REMARK PAYROLL SUBSYSTEM

110 REMARK COPYRIGHT CONSUMER PROGRAMMING CORP 12/79
120 REMARK

130 REMARK HP 2000 BASIC

140 REMARK MODIFIED FOR MICROSOFT BASIC BY J. BROWN
150 REMARK ON TRS-80, 16K, LEVEL II BASIC

160 REMARK

Follow these remarks with a brief explanation of what the program does,
contained either in REMARK statements or in PRINT statements. Next add user
instructions. For some programs you might offer the user the choice of having
instructions printed or not. If instructions are long, place the request for instructions
in the introductory module and the actual printed instructions in a subroutine toward
the end of your program. That way, the long instructions will not be listed each time
you LIST your program.

WRITING BASIC PROGRAMS FOR CLARITY, READABILITY, AND LOGIC 7

170 REMARK THIS PROGRAM WILL COMPUTE PAY AND PRODUCE PRINTED PAYROLL
180 REMARK REGISTER USING DATA ENTERED BY OPERATOR

190 REMARK

200 LINE INPUT "DO YOU NEED INSTRUCTIONS?"; RS

210 IF R$ = "YES" THEN GOSUB 800

220 REMARK

Follow the description/instructions with a series of statements to identify the
variables, string variables, arrays, constants, and files used in the program. Again,
these statements communicate information to a READER, making it that much easier
for you or someone else to modify the program later. We usually complete this
section AFTER we have completed the program so we don’t forget to include any-
thing.

Assign a variable name to all “constants” used. Even though a constant will not
change during the run of the program, a constant may change values between runs.
By assigning it a variable name, you make it that much easier to change the value;
that is, by merely changing one statement in the program. It is a good idea to jot
down notes while writing the program so important details do not slip your mind or
escape notice. When the program has been written and tested (debugged), go back
through it, bring your notes up-to-date, and polish the descriptions in the REMARKS.

220 REM VARIABLES/STRING VARIABLES

230 REM G = GROSS PAY

240 REM N = NET PAY

250 REM ITT = FEDL. INCOME TAX

260 REM 172 = STATE INCOME TAX

270 REM F = 80C, SEC. TAX

280 REM D = DISABILITY TAX

290 REM XyY,Z, = LOOP VARIABLES

300 REM H(X) = HOURS ARRAY

310 REM N$ = NAME (20)

320 REM PN$ = EMPLOYEE NUMBER (5)

330 REM

340 REM CONSTANTS

350 LET FR = ,0613: REM S0C. SEC. RATE
360 LET SDR = .01: REM SDI RATE
370 REM

380 REM FILES USED

390 REM ITM = FEDL. TAX MASTER FILE
400 REM STM = STATE TAX MASTER FILE
410 REM

(Notice the method used to indicate string length in lines 310 and 320.)
(Notice the use of on-line remarks in lines 350 and 360.)

The final part of the introductory module is the initialization section. In this
section, dimension the size of all single and double arrays and all string arrays, even
if DIMENSION is not required by your computer. This is valuable information for
a reader. Any variables that need to be initialized to zero should be done here for
clear communication, even if your computer initializes all variables to zero auto-

8 DATA FILE PROGRAMMING IN BASIC

matically. This section also includes any user-defined functions before they are used
in the program.

420 REM INITIALIZE

430 DIM H(7), R(10,3), N$(30)
440

450 REM

THE MODULES THAT FOLLOW THE INTRODUCTION

The remainder of your program consists of major function modules, subroutines,
DATA statements, and PRINT USING format IMAGE statements, when they are used.
Remember to separate each module from others by a blank line REMARK statement
and a remark identifying the module. These modules can be further divided into user-
defined program blocks, each separated by a blank line REMARK statement.

A typical second module would be for data entry. Data can be operator-entered
from the keyboard or entered directly from DATA statements, a file, or other device.
Chapter 3 discusses in detail how to write data entry routines with extensive error-
checking procedures to ensure the accuracy and integrity of each data item entering
the computer.

For now, we suggest that you write data entry routines so that even a completely
inexperienced operator would have no trouble entering data to your program. This
means the operator should ALWAYS be prompted as to what to enter and provided
with an example when necessary.

240 INPUT "ENTER TODAY'S DATE (MM/DD/YY)";Ds

If data are entered from DATA statements, place the DATA statements near the
end of your program (some suggest even past the END statement) using REMARK
statements to clearly identify the type of data and the order of placement of items
within the DATA statements.

9400 REM DATA FOR CORRECT ANSWER ARRAY IN QUESTION ORDER
9410 REM 10 ANSWERS, RANGE 1-5

9420 REM

9430 DATA 4,5,1,3,2,1,,1,4,4,5

9440 REM

9460 REM RESPONDENTS ANSWERS TO QUESTIONS

9470 REM RESP, ID ¥ FOLLOWED BY 10 RESPONSES, 1~5

9480 REM

9490 DATA 17642, 4,5,1,3,2,2,1,
9500 DATA 98126, 3,5,2,3,2,1,5,

’4’4
15,2

WRITING BASIC PROGRAMS FOR CLARITY, READABILITY, AND LOGIC 9

You can think of DATA statements as a separate program module. The “in-
between” program modules might do computations, data handling, file reading and
writing, and report writing. Modular programming style dictates that all printing and
report generation, except error messages, be done in one program module labeled as
such. This limits the use of PRINT and PRINT USING statements to one easy-to-find
location within your program. (There might be more than one print module.) This
makes it that much easier for you to make subsequent changes on reports when paper
forms change or new reports are designed. In the print module your program should
NOT perform any computations except trivial ones. Make important computations
BEFORE the program executes the print module(s). This may require greater use of
variables and/or arrays to “hold” data pending report printing, but your programs will
be much cleaner and easier to debug, since everything will be easy to find in its own
“right” place.

SUBROUTINES
Program control flows smoothly from one module to the next. A well-designed

module has one entry point at its beginning and one exit point at its end. The
exception to this is a mid-module exit to a subroutine.

290 REM

300 REM COMPUTATION MODULE
310:

320 LET T = (Vv * X) 7/ Q

330 LET T9 = 79 + T

340 GOSUB 800

350:

400 REM REPORT PRINTING MODULE
410:

A subroutine exit from a module always RETURNS to the next statement in the
module. The use of subroutines is desirable provided you don’t overdo it. Some
program stylists recommend that the entire main program consist of nothing but
GOSUB statements “calling up” a series of subroutines located later in the program.
Such a technique is probably guilty of overkill. Strive for a happy medium between
the two extremes of no subroutines and nothing but subroutines.

Technically, you need use a subroutine only to avoid duplicating the same
program statements in two or more places in your program. A subroutine should be
called from MORE than one place in your program. Otherwise, why use a formal
subroutine? Program stylists now agree that subroutines enhance readability and
clarity and can be used at the convenience of the programmer (you!). However, again
the caution — don’t overdo it. Use subroutines to enhance the flow and readability
of your program. Stylists also agree that subroutines should be clearly identified
using REMARK statements and set off from other program sections with blank
REMARK statements. Program stylists disagree, however, on where to place the
subroutines. There are two schools of thought. Placement of subroutines can be
either immediately past the end of the module that calls the subroutine or in one
common module toward the end of the program.

10 DATA FILE PROGRAMMING IN BASIC

EITHER
300 REM COMPUTATION MODULE
310404
320404
330 GOsUB 410
340 GOSUB 460
400 REM NUMBER CONVERSION SUBROUTINE
410 suna
450 REM COMPUTATION SUBROUTINE
460 uee

OR

330 GOSUB B10
340 GOSUB 910
800 REM NUMBER CONVERSION SUBROUTINE
810...
S00 REM COMPUTATION SUBROUTINE
910,44

JUST FOR LOOKS

You can do a host of things to your programs to enhance looks and clarity. These
techniques are generally called “prettyprinting.” Some of these techniques may not
be possible on your computer; others may be done by it automatically. Try them out.
If they work, use them to make your programs look nicer.

Spacing

One way to make your programs look nicer is to use line numbers of equal length
throughout the program. If your program is small, use line numbers 100 through 999.
If long, start the program at 1000 and continue to 9999. When your program is
listed, it will be aligned neatly. If your computer has a renumber or resequence
command, it looks nice if the entire program is incremented by steps of ten (10).

WRITING BASIC PROGRAMS FOR CLARITY, READABILITY, AND LOGIC 11

Without a resequence command this is virtually impossible to do. A partial solution is
to enter statements in sequence increments of ten when you first enter your program.
When you have completed the program, even with changes, MOST of the program

will still be in increments of ten and look nice.

Prettyprinting also includes adding spaces in statements for clarity. Add spaces
so the statement is easy to read. TRS-80 BASIC and BASIC-80 permit you to add
spaces whenever you wish. Whatever you type on the keyboard is EXACTLY what is
entered into the computer and printed in a program listing. This is not true on many
computers which disregard user-typed spaces and do their own version of prettyprinting
automatically.

The following rules for spacing are suggested:

1. Use spaces to show the difference between REMARK comments and BASIC code.

GOOD

100 REM SUBROUTINE TO TEST DATA ENTRY
110 RiEM
120 LET D% = N$
130 LET Z = LEN(DS)

BETTER
100 REM SUBROUTINE TO TEST DATA ENTRY
110 REM
120 LET D% = N$
130 LET Z = LEN(DS)

2. Space before and after arithmetic operators and relational operators.

140 LET € = (A ¥ B) / D
150 IF D% <> C$% THEN PRINT "DATA ENTRY ERROR"
160 IF ¢ <= p THEN 700

3. Space before each item in a DATA list.

340 DATA A, B, C$
900 DATA 36, 14, "WIDGETS"

4. Space between BASIC command and variables.

150 LET X = Y
160 FOR N = 1 TO X
170 IF R$ = "STOP" THEN 999

12 DATA FILE PROGRAMMING IN BASIC

5. For NEXT loop spacing:

a. Indent the body of a FOR NEXT loop two to three spaces.

100 FOR X = 1 TO 40
110 LET Y = 2 * D
120 PRINT X, Y
130 NEXT X

b. Indent nested FOR NEXT loops two to three spaces, or use colons to indicate
nesting.

100 FOR X = 1 TO 10

110 FOR Y = 1 TO S
120 LET A(X,Y) = O
130 NEXT Y

140 NEXT X

or

100 ¢+ FOR X = 1 TO 10

120 :: FOR Y =1 70 S
130 LET A(X,Y) = 0
140 s NEXT Y

150 ¢ NEXT X

6. Indent nested IF. . THEN statements two to three spaces.

100 IF As = "STOP" THEN 999
110 IF B$s = "END" THEN 999
120 IF C = 0 THEN 999

7. Indent the body of IF. . .THEN loops.

140 IF X <> Y THEN 200
150 PRINT "INVALID ITEM ENTERED": GOTO 240

Other Techniques To Enhance Looks and Readability
You can do still more to make your program clearer to you and another reader. These
few ideas are the “finishing touch.”

Using LET, even though unnecessary, is very readable. The absence of LET can
be confusing, especially in a multiple statement line.

Confusing

260 X=Y : C = X*Y: IF X=N THEN X=C

WRITING BASIC PROGRAMS FOR CLARITY, READABILITY, AND LOGIC 13

Better
140 LET X = 0 1 Y = 0 : C = 0
Best

260 LET X = Y : LET € = X * Y : IF X = N THEN LET X = C

Arrange BASIC statements so that they read smoothly from left to right, just as
the readers’ eyes flow across the paper. This includes placing A before B and 1 before
2. Some stylists recommend that in IF. . THEN statements, you place the least vary-
ing variable last, as shown in lines 270 and 300 below.

150 READ A, B, C

260 FOR X = 1 TO 8
270 IF M(X) <> N THEN 290
280 LET M9X0 = N

290 NEXT X

300 IF D$ = "STOP" THEN 999

If your typed statement is long, it is probably confusing, especially if it is a
mathematical equation. Break it into two or more pieces so it is easy to read. Read
the statements aloud to test their readability.

Confusing

250 LET T = (N * 3,75) + ((N ~40) * 3,25) + ((N - 60) / 3)/
((D * N) * A)
Clearer

250 LET T
255 LET T

(N * 3,75) + ((N — 40) * 3,25)
T+ ((N =~ 60) / 3) /7 ((D * N) * A)

To maximize the “prettiness” of any printed report, use the PRINT USING or
formatted output capability available in most BASICs. For the best looking results
in your screen displays, use whatever graphic display commands your BASIC includes.
However, be aware that the PRINT USING and graphic display commands are very
different from BASIC to BASIC. Although you should use PRINT USING and graphics
to enhance output, you inhibit program portability when you do so. One possible
solution to this problem is to place all graphic display routines in clearly identified
subroutines so a reader is directed to the right section of your program to make
changes. Formatted strings used with PRINT USING can all be placed in one location
toward the end of the program, making it easy for another user to change.

14 DATA FILE PROGRAMMING IN BASIC

UNDOING IT ALL TO SAVE SPACE AND SPEED UP RUN TIME

After reading all these rules and ways to enhance readability, you are probably wonder-
ing how you will possibly remember them all. You probably won’t, but we hope we
have at least sensitized you to the need for writing clear, readable programs. You will
adopt your own typing style based on some of these techniques, plus others that you
devise for convenience.

Nearly every technique illustrated in this chapter uses what some would consider
to be unnecessary memory space. You may in fact find that your computer memory
is filled before you have completely entered your program. When this happens, either
rethink your entire problem-solving technique or look for ways to save memory space
by making changes to your program. A well-written, readable program takes up more
memory space than a poorly written, less readable program. Thus, to save memory
space, you may have to undo some of the things you did to enhance readability.

To save large numbers of memory “bytes:”

1. Use multiple statements per line.
2. Delete all REMARK statements beginning with the introductory module.

For further space saving:

Use one-letter variable names.

Delete unnecessary parentheses.

Reuse variables when possible (normally a terrible technique).
Delete spaces between characters in a statement.

Use integer variables when possible.

Nk wn =

FOR X% = 1 T0O 10

o

Dimension arrays sparingly.
7. Use GOTO, not GOSUB, for a routine accessed from only one place in a
program.

If you are concerned about the speed of your program run, you can use some
techniques to shave microseconds, even seconds, off the run time. Some of these
overlap with the space-saving techniques.

Delete all REMARKS and/or move the introductory module to the end.
Use multi-statement lines.

Use variables rather than constants (as recommended earlier).

Define the most commonly used variables first.

Use integer variables where possible.

Place subroutines before the main program.

Use FOR NEXT loops whenever possible.

Remove extra parentheses.

Limit the use of GOSUBs.

WO R W=

WRITING BASIC PROGRAMS FOR CLARITY, READABILITY, AND LOGIC 15

Remember, these techniques may speed up your run, but they are generally
considered to be bad programming techniques and contrary to nearly everything said
in this chapter.

To save space and lessen distraction we have not followed ALL the rules suggest-
ed in this chapter in the rest of this book. However, you will still find our programs
easy to read and self-documenting.

CHAPTER 1 SELF-TEST

1. Will a useful program written in BASIC on one computer system also RUN on a
different brand of computer that uses BASIC? Why or why not?

2. How can you be most certain that a program you write will also run on another
person’s computer?

3. What is meant by the portability of a computer program?

4. Name at least three types of information to include in REMARK statements in
a program’s introductory module.

5. Describe the “top-to-bottom format” for organizing programs.

16

DATA FILE PROGRAMMING IN BASIC

10.

When branching statements such as GOTO and GOSUB are used, what statements
should not be branched to and why?

Define “initializing.”

What is the most important reason for designating a segment of a program as a
subroutine accessed by GOSUB?

When writing a self-documenting, easy to read program, what sacrifices are made?

In a multiple statement line with three statements, the first being a REMARK
statement, how many statements will be executed?

WRITING BASIC PROGRAMS FOR CLARITY, READABILITY, AND LOGIC 17

10.

Answer Key

The program might not run on a different brand of computer, because different
computers use different versions of BASIC.

Use conservative programming techniques and the least fancy statements in your
version of BASIC.

Portability means that the program is likely to run on many computers with few
or no modifications.

Variables used and what they stand for, files used, descriptive name for program,
description of program if necessary, author of program, last revision of program,
version of BASIC and/or system used. (any three answers)

To the extent possible, the program is written so that it begins execution at the
smallest line number and procedes towards the largest, with a minimum of con-

fusing branching within the program.

REMARK statements, in case they are removed from a program to save computer
memory space.

The first time in a program that value(s) are assigned to variables or elements in
a array (often means assignment of zeros); DIMENSIONING where needed.

The segment would otherwise have to be repeated because it is used more than
once in executing the program.

Amount of memory used and poussibly speed of program execution.

None. The computer goes on to the next line numbered statement if it sees that
the first statement in the line is a REMARK.

CHAPTER TWO

An Important Review of
BASIC Statements

Objectives: To review important aspects of BASIC. When you finish this chapter,
you will be able to write BASIC statements using: LET, READ, DATA, INPUT,
LINE INPUT, IF. . .THEN, FOR NEXT, GOSUB, RETURN, ON. . .GOTO, LEN,
ASC, MIDS, LEFT$, RIGHTS, and INSTR.

INTRODUCTION

We assume you have used BASIC to write programs and that you can read and under-
stand a listing of a BASIC program (are you BASICly literate?); this information serves
as a review. Many of the programming techniques in this and the next chapter will

be used over and over again in your programming of data files. Even masters at
programming in BASIC should give the material a quick run through. This is impor-
tant information and skill to have under your beit so that you can give your fullest
attention to learning file-handling BASIC statements and techniques in Chapter 4.

VARIABLE NAMES

In early versions of BASIC, the names you could choose for a variable were limited
to one letter, or one letter and one number only. A, Al,Z7,Z{, B$, and B1§ were all
acceptable variable names: while AA, A25, SALARY, or NAMES$ were unacceptable

to the computer. In contrast, BASIC-80 and other new dialects of BASIC permit the
use of multi-letter variable names. The unacceptable variable names mentioned above
are all acceptable in these newer versions of BASIC, as are SUBTOTAL, TOTAL,
NETPAY, GRANDPRIZE, GUESS, OLDNAMES, NEWNAMES, and many others you
may think of. The temptation to use long variable names may be overwhelming,

but beware! TRS-80 BASIC recognizes and identifies the variable using only the first
two letters of the variable naine. “Thus, the variables SALES and SALARY are not
really two variables, but rather one — SA. PAYMENT and PAYROLL are really the
same variable — PA — in TRS-80 BASIC, but are different variables in BASIC-80,
which identifies up to forty characters in a variable name. Be extremely cautious

18

AN IMPORTANT REVIEW OF BASIC STATEMENTS 19

selecting variable names to avoid unusual errors that are hard to detect. Also note that
longer variable names take up more computer memory space, which may become a
problem as the programs you write become longer and more complex.

Another limitation when using long variable names is that you cannot use a
combination of letters that are also used for a BASIC statement, command, or function.
A Reserved Word List in your reference manual tells you which words cannot be a
part of a long variable name. Examples are:

FOR, DATA, OPEN, CLOSE, PRINT, KILL, IF, THEN

Use of simple variable names (A, T1, Y$) precludes having to debug a program when
the problem is a reserved word accidentally used (embedded) in a long variable name.
Notice in our examples, that even with simple variables we have selected names that
are more likely to be remembered and make sense to someone reading the program.
We encourage you to do the same. Use T for total, T9 for grand total, S for salary,
NS$ for name, etc.

The letters O and I are poor variable names since they are easily confused with
the number § (zero), the number 1 (one), or the lower case letter 1 (el). Some experi-
enced programmers reserve a few variables and use them the same way in all programs
they write. X, Y, and Z are popular as control variables in FOR NEXT loops. K and
C are popular for counting in statements like LET C =C + 1.

Variables, also called variable names or labels, identify for the computer a
particular place in its memory where information is stored. The information may be
numeric (a value) or alphanumeric (a string, discussed more fully later). A value or
string is first stored by an assignment statement (LET, READ, INPUT), and sub-
sequent references to the variable tell the computer to use the value or string assigned
to (and identified by) that variable. Assignment statements are included in this review
of BASIC.

(2) Give two reasons for using simple variable names such as A, X3, and YS.

20 DATA FILE PROGRAMMING IN BASIC

(a) 1. Conserves computer memory space.
2. No reserved words are accidentally embedded in the variable.
3. Portability of programs between different versions of BASIC.
(any two answers)

String Variables

The rules for constructing names for string variables are the same as for numeric
variables, except that a string variable always has a dollar sign ($) as its last character.
A is a numeric variable, whereas A$ is a string variable. A string is one or more letters,
symbols, or numbers that can be used as information in a BASIC program. Strings
are stored in the computer’s memory with an assignment statement such as LET B$ =
“EXAMPLE OF A STRING.” The string variable B$ acts as a label in the computer’s
memory for the place where the string assigned to B$ is stored. A reference to BS
elsewhere in the program automatically tells the computer to use the string assigned
to B$. The string assigned to a string variable is often referred to as the “value” of
the string variable.

String variables act much like numeric variables and can generally be manipulated
just like numeric variables. The crucial difference, is that you cannot use string
variables in arithmetic expressions and calculations, even if numeric information is
assigned to the string variable. For example, LET F$ = “8.99” does not let you use
F$ in numeric calculations, even though the string is comprised of numbers.

String variables and the strings assigned to them take up space in your computer’s
memory. You can visualize this as a box or compartment that contains alphanumeric
information identified by a string variable. For example, the assignment statement
LET N§ = “ALPHA PRODUCTS COMPANY” can be thought of as creating a storage
compartment in the computer’s memory like this:

N§ ALPHA PRODUCTS COMPANY
) A

the string variable the string

Remember that a string assigned to a string variable in this way has the string enclosed
in quotation marks. Only the information between the quotation marks comprises
the string; the quotes themselves are not part of the string.

Many, if not most, business and personal applications of data files make much
greater use of alphanumeric data (strings) than numeric data (numbers or values), so
we are taking this opportunity to reinforce and extend your understanding of the use
of string variables. Notice the word “alphanumeric.” This term comes from the data
processing industry and refers to data that may consist of alphabetic characters, numeric
characters, and/or special characters. For example, the product identification number
FC1372 appearing in a catalog is alphanumeric data consisting of two alphabetic
characters followed by four numeric characters. An address or hyphenated phone
number is also alphanumeric data. To use and store such information in BASIC,
assign it to a string variable (LET P$ = “FC1372”) because a simple numeric variable
would not accept the two alphabetic characters. If an identification number is mostly

AN IMPORTANT REVIEW OF BASIC STATEMENTS 21

numeric, but includes a hyphen, asterisk, or even a space (e.g., 84992%, where the “*”
denotes a special location, price, etc.), then it too requires the use of a string vari-
able.

One string variable can have from zero to 255 characters, including all spaces,
punctuation, and special characters. A string with no characters (zero characters) is
called a null string or empty string. An assignment statement for a null string would
be: LET Z§ = « ,

There is a crucial difference between the maximum length of a string (255
characters) and its actual length. The actual length is the number of alphanumeric
characters presently assigned to the string variable and stored in the computer’s
memory. Remember, spaces count as characters. Consider the lengths of the follow-
ing strings assigned to string variables.

N$ ALPHA PRODUCTS Actual length: Fourteen characters

C$ MENLO PARK, CA. 94025 Actual length: Twenty-one characters
(includes comma, period, and spaces)

Now you do this one:

A3 161 DAWN ST. SUITE 3

(a) What is the maximum length for a string assigned to A$?

(b) What is the actual length of the string shown as assigned to A$ above?

(a) 255 characters
(b) Twenty characters

Since TRS-80 BASIC and BASIC-80 automatically assume that a string variable
can be assigned a string with up to 255 characters, there is no need to DIMENSION
string variables. However, we recommend that you show a person using your program
what the string size (maximum actual size) is for all string variables listed in the
program. Do this by including REMARK statements in the introductory module,
as shown:

22 DATA FILE PROGRAMMING IN BASIC

4 3

140 REM STRING VARIABLES

150 REM N$ = CUSTOMER NAME(20)

160 REM A$ = CUST. ADDRESS(25)

170 REM C$ = CUST. CITY(15),STATE(2),ZIP(5)
180 REM (26 TOTAL INCLUDING SPACES)
190 REM

(a) How many characters are contained in a null string assigned to a string variable?

(b) In the actual length of a string, how many characters does a space use?

(a) zero (none)
(b) one

As noted earlier, you can assign a string to a string variable using the LET
statement. Remember to place the string inside quotation marks, or the computer
will reject the statement; it will tell you that an error has been made. Example:

240 LET N$ = "TYPE A POSITIVE"

Almost all versions of BASIC allow omitting the word LET from an assignment
statement. For this reason, LET statements are sometimes called direcr assignment
statements to distinguish them from INPUT and READ assignment statements. A
variable (numeric or string) followed by an equal sign (=) implies LET to BASIC; thus,
the “implied LET” direct assignment statement can save a bit of typing and a little
memory space. We generally include LET for clarity in reading a program listing. This
statement:

240 N$ = "TYPE A POSITIVE"

means the same in BASIC as the example before this paragraph.

READ-DATA ASSIGNMENT STATEMENTS

DATA statements are like data files in that they hold data to be assigned to variables
and are then used in a program. The difference is that a DATA statement holds data
that can only be used by the program in which the DATA statement appears, whereas
a data file can be created and the data used by a variety of different programs, since
it is separate from the program itself. This will be explained in greater detail later.

AN IMPORTANT REVIEW OF BASIC STATEMENTS 23

The READ statement, which must have one or more DATA statements in the
same program to READ frém, is an assignment statement. One or more data items
from a DATA statement are assigned to one or more variables by a READ statement.

10 READ A
20 DATA 15, 76.5, 1892, —999

The statement READ A assigns a numeric value from the DATA statement to variable
Al

10 READ A, B
20 DATA 15, 76.5, 1892, -999

The statement READ A, B assigns two consecutive values from the DATA statement;
the first to variable A, the second to B.

A program can also use the READ and DATA statements to assign strings to
string variables. A DATA statement can contain strings as data items, and these
strings are assigned to string variables by a READ statement using the same procedure
as for reading numeric values.

220 READ A%, B$, C3

910 DATA BLUE, GREEN, GOLD

In TRS-80 BASIC and BASIC-80, the individual string items in the DATA statement
do not have to be enclosed in quotation marks unless the string data item includes a
comma, semicolon, or one or more leading spaces (blank spaces that are to be included
and considered part of the string). In the latter cases, enclose the string data item in
quotation marks, just as for a LET direct assignment statement. In TRS-80 BASIC
and BASIC-80, any trailing spaces left between a string data item and the comma
separating it from the next item in the same data statement are accepted as part of
the string and duly assigned to the string variable. Note that the actual length of such
a data item includes these trailing spaces, even though they seem invisible.

In the following example, quotation marks are necessary around each data item
because a comma is part of the string data items themselves.

220 READ Ns$

910 DATA "BROWN, JERALD R.", "FINKEL, LEROY P."

24 DATA FILE PROGRAMMING IN BASIC

Try this test program to see how the “trailing space” rule works on your system.

220 READ N$%, A3
230 PRINT N$%; AS
910 DATA TEST s ITEMS

RUN
TEST ITEMS

There should be only three spaces between the words TEST and ITEMS because
the leading spaces before items are not included, while the trailing spaces after TEST
and before the comma are included. Now change line 910 as shown below and RUN
the program segment again.

910 DATA "TEST ", ITEMS"

(a) How many spaces should now appear between the strings when the program is

RUN?

(a) six spaces

The computer uses an internal “pointer” system to keep track of items in a
DATA statement that are “used up” or already assigned to variables in a program
RUN. When executing READ-DATA statements, each time a data item is read and
assigned to a variable the internal pointer advances one position in the DATA state-
ment to the next data item. If the pointer is pointed at alphanumeric data (a
string) and the READ statement is looking for numeric information to assign to a
numeric variable, the program will terminate in an error condition. For example:

210 READ A
910 DATA ALPHA, NUMERIC

An error condition would result from executing this program segment because
the statement READ A is “looking” for numeric data to assign to the numeric variable
A, but the pointer is pointing at alphanumeric information.

What will happen if this program is RUN?

210 READ A%, BS
220 PRINT A$; BS
910 DATA 17926, NUMERIC
(a) Will the program RUN without an error condition?

(b) What will be assigned to A} and why?

AN IMPORTANT REVIEW OF BASIC STATEMENTS 25

(&) Yes (in TRS-80 BASIC and BASIC-80).
(b) AS$ = 17926, since a number can be assigned as a string to a string variable (but
not vice versa).

UNDERSTANDING INPUT,
AN IMPORTANT ASSIGNMENT STATEMENT

You can enter numeric or alphanumeric information to be assigned to a numeric
variable or a string variable using the INPUT statement. A related assignment statement,
the LINE INPUT statement, can accept only alphanumeric information to be assigned
to one string variable, as discussed in more detail later.

When using INPUT statements, make certain that the data entry person using
your program at a computer terminal knows exactly what kind of information to enter
for assignment to a variable by the INPUT statement. To do so, you must fully
understand how INPUT works in your version of BASIC.

The INPUT statement should always include a prompting string (a message that
appears on the printer or display screen) to tell the user exactly what sort of informa-
tion is to be entered. A typical format for an INPUT statement is:

160 INPUT "ENTER YOUR NAME, FIRST NAME AND THEN LAST"; N$

An INPUT statement without a prompting message (the part enclosed by quotes)
causes the computer to print or display a question mark; the computer then waits for
a response from the keyboard. There is nothing more frustrating to a computer user
than an INPUT question mark with no hint as to what sort of response is requested.
Always use a prompting string in an INPUT statement. 1f necessary, use PRINT
statements preceding the INPUT statement to explain to the user what information
to enter.

Another source of user frustration is the funny responses the computer can make
when incorrect data are entered. Consider the following example:

360 INPUT "ENTER PRODUCT NUMBER AND QUANTITY"; N, Q

RUN
ENTER PRODUCT NUMBER AND QUANTITY?137
?7?

The user entered the number 137 after the prompting message and question mark, and
then pressed the ENTER key. The computer responded with a double question mark
(?7), indicating that more data were expected. Notice that the INPUT statement had
two variables to assign values to but only one value (137) was entered. An inexperi-
enced user would not know that.

26 DATA FILE PROGRAMMING IN BASIC

RUN the same program segment again and enter three items of data.

RUN
ENTER PRODUCT NUMBER AND QUANTITY?137,12,164
? ENTRY IGNORED

or

INPUT ERROR-RETYPE
or

? REDO FROM START

These general error messages don’t provide any help to the user since they don’t pin-
point the problem. To make matters worse, the computer may accept incorrect data
and assign it to the INPUT variables!

The same error conditions and input problems can occur in string data with an
additional peculiarity. Consider the following program segment:

180 INPUT "ENTER CUSTOMER NUMBER AND NAME"; C, N$
190 PRINT C, N$

RUN

ENTER CUSTOMER NUMBER AND NAME?13726
77

13726

Here the user entered the customer number (13726) and pressed ENTER, and the
number was duly assigned to variable C. But when the ?? appeared, indicating that
the computer expected yet another entry, the user pressed the ENTER key again
without making another entry. While the computer wanted a second entry to assign
to N$, it accepted “nothing” as an entry; that is, it accepted a null string and assigned
it to N$. If we changed the INPUT variables to C$ and N$ (instead of C and N§),
the computer would accept null strings for assignment to both string variables. In that
case, the computer interprets two presses on the ENTER key as meaning that it
should assign null strings to both variables.

Not all versions of BASIC, even MICROSOFT BASIC, react as we have explained
for TRS-80 BASIC. MICROSOFT BASIC-80 will give you the message ? REDO
FROM START if you enter for INPUT:

(1) too few values or strings.
(2) too many values or strings.
(3) the wrong type of data; that is, a string for a numeric variable.

Furthermore, pressing the ENTER or RETURN key without making an entry
will assign a zero to a numeric variable and a null string to a string variable.

Our insistence on the importance of understanding INPUT should now be hitting
home. So what do you do for the accidental null string entry and the other eccentri-
cities of the INPUT statement?

AN IMPORTANT REVIEW OF BASIC STATEMENTS 27

Two programming techniques can help eliminate errors. First, ask the user to
enter only one value or string per INPUT statement, period! This makes data entry
(and data checking, as we will discuss in the next chapter) nice and clean. For
example:

RUN

ENTER CUSTOMER NUMBER?137

ENTER CUSTOMER NAME?BISHOP BROTHERS
ENTER PRODUCT NUMBER?18625

ENTER QUANTITY ORDERED?106

Second, to have all input entries, whether string or numeric, assigned to string
variables. This eliminates error messages for numeric variables that cannot accept
alphanumeric information for assignment. In the next chapter you will learn to test
for null strings (no entry made) and appropriately advise the user with explicit mes-
sages as to the proper entry to be made. Numbers (numeric values) assigned to string
variables can be converted from strings to numeric values for arithmetic operations using
the VAL function. If Q$ = 106 (a string), then VAL{QS$) converts 106 to a numeric
value that can be assigned to a numeric variable and/or used directly as a numeric
value in a BASIC expression. VAL is discussed in the next chapter.

(a) Write an INPUT statement that will result in the following RUN:

RUN
ENTER YOUR HOME ADDRESS?

(a) 100 INPUT “ENTER YOUR HOME ADDRESS”; A$ (your line number and
string variable may be different).

The LINE INPUT Statement

TRS-80 BASIC and BASIC-80 provide an alternate INPUT statement called the
LINE INPUT statement. This statement allows you to enter data that includes
commas, quotation marks, and lead blanks (spaces). LINE INPUT (LINPUT on some
computers) is used only to enter data for assignment to a string variable, with only
one string assignment (and string variable) per LINE INPUT statement. This parallels
our emphatic recommendation that you request only one entry per INPUT statement
and that all data be entered as strings, whether numeric or alphanumeric. Note that
LINE INPUT allows a prompting string just as the INPUT statement does. However,

28 DATA FILE PROGRAMMING IN BASIC

it does not automatically add a question mark at the end of the prompt when the
program is RUN. If you want a question mark (or a hyphen or colon) to appear at
the end of the prompting string, include it inside the quotation marks as part of the
prompt. If a LINE INPUT statement contains no prompt, not even a question mark
will indicate to the user that the program is waiting at a LINE INPUT statement for
data to be entered from the keyboard. Here is an example of a LINE INPUT
statement:

160 LLINE INPUT "ENTER MAILING ADDRESS:"; Ms

RUN
ENTER MAILING ADDRESS:

LINE INPUT is particularly useful when entering a line of text (LINE INPUT,
get it?), because it will accept all commas and quotes within the text and stops
accepting data only when you press the ENTER key. However, the maximum length
of a “line” is still 255 characters per string variable and, therefore, per LINE INPUT
statement. We use LINE INPUT for convenience. If your computer doesn’t accept
a LINE INPUT statement, use INPUT.

(a) Give two reasons the authors prefer the use of LINE INPUT over the INPUT
statement.

(a) 1. LINE INPUT forces you to ask for only one entry per INPUT statement.
2. Only string assignments can be made with the LINE INPUT statement.

CONCATENATION

Strings can be joined to form longer strings; a process called concatenation. Strings
are concatenated in BASIC using the plus (+) sign. The process, however, is one of
joining, not of arithmetic addition. For example, the strings assigned to F$ and L§
can be concatenated and the new, longer string assigned to another variable N§ in an
assignment statement like this:

110 LET N$ = F$ + L%

AN IMPORTANT REVIEW OF BASIC STATEMENTS 29

Strings assigned to variables can be concatenated with string constants, like this:
120 LET G3 = N$ + "CUSTOMER"
or
150 LET N$ = Fs + " " + s
The statement above concatenates the strings associated with F$ and L and assigns
them to N$, but it also places a space in the new N§ string between the parts of N§

that were assigned to F$ and L$. Look at the following program and show what will
be printed when it is RUN.

(@) 10 LET Fs = "JANET"
20 LET L$ = "BARRINGTON"
30 LET N$ = F$ + " " + s

40 PRINT N3

RUN

(a) JANET BARRINGTON

IF. . .THEN STATEMENTS

The IF. . .THEN statement in BASIC gives the language real power. Its syntax varies
from one BASIC system to another. Some BASICs permit only a GOTO statement
to follow and IF. . .THEN expression.

140 IF X<Y THEN (GOTO) 800

(The GOTO can be, and usually is, omitted.)

30 DATA FILE PROGRAMMING IN BASIC

The simplest form of IF. . .THEN is a COMPARISON between two numeric
values or expressions. IF the comparison is true, THEN (GOTO) a given line number
and continue executing the program with the statement at that line number. Since
GOTO is usually omitted, just the line number follows THEN. The possible compari-
sons are:

il

equals

< less than

> greater than

<= less than or equal to*
>= greater than or equal to*
<> not equal to**

*Note: most BASICs allow you to put the equal sign either before or
after the greater than or less than symbol.

**Note: some BASICs either use <> or allow the # sign as a “not equal
to” symbol.

TRS-80 and BASIC-80 also include in the IF. . .THEN family of statements:

IF. . .THEN LET. .. (Follow rules for regular LET statements.
LET can be omitted.)

IF. . .THEN GOSUB. . . (Line number follows GOSUB.)

IF. . .THEN RETURN. .. (Unusual, but possible.)

IF. . .THEN PRINT. . . (Follow all the rules for regular PRINT

statements.)

IF. . .THEN INPUT. . .

IF. . .THEN READ. .. (These two are possible, but are not recom-
mended because of confusion and debugging
complications.)

IF. . .THEN STOP. . .

IF. . .THEN END. .. ’

IF. . .THEN IF. . .THEN. . . (Possible, but confusing and unnecessary.)

(a) What statement is implied after the THEN in the simplest form of the IF. . . THEN

statement?

(b) List at least five BASIC statements that can be part of an IF. . THEN statement
and that will be executed if the condition (comparison) is true.

AN IMPORTANT REVIEW OF BASIC STATEMENTS 31

(a) GOTO

(b) PRINT, GOTO (assuming a line number appears after THEN),
LET (direct assignment statement, with the option of omitting the word LET),
READ, INPUT, another IF. . .THEN statement (not recommended),
GOSUB, RETURN (any 5 answers)

IF. . .AND. . THEN. . . and IF. . .OR. . THEN. . . are called the logical AND
and logical OR. They allow you to put more than one comparison in a single
IF. . .THEN statement. The comparisons on both sides of an AND must be true for
the entire IF. . .THEN comparison to be true. Only one comparison on either side
of an OR must be true for the comparison to be true. You can use more than one
AND and more than one OR between IF and THEN, and you may use both AND
and OR in the same IF. . .THEN statement which allows three or more comparisons
in one IF. . .THEN statement! Be certain you understand how to use the logical
AND and OR to produce the results you want. We find they are useful for certain
checks on user INPUT entries. If an INPUT value should be between five and twenty,
then the following statement would check that the value was within these parameters.

150 IF F<5 OR F>20 THEN PRINT "ENTRY IS INCORRECT"

Alternately, the following line would check for “within bounds” parameters for the
value assigned to F, instead of “out of bounds” values.

150 IF F>=5 AND F<=20 THEN PRINT "ENTRY WITHIN BOUNDS"

Note: be very careful to have your logic straight or such comparison statements will
not do what you want. For some, flow charts help visualize the alternatives so you
can properly construct your comparison statements. Thorough testing of programs
and program segments with every conceivable mistake that you could enter is a must.

(a) Write two IF. . .THEN statements, one using a logical AND and another using a
logical OR. The statement should test to see if the value assigned to variable Y
is greater than, but not equal to, zero, and less than, but not equal to, one. When
the comparison is true, one statement should print the message BETWEEN ZERO
AND ONE, and the other should print NOT BETWEEN ZERO AND ONE.

32 DATA FILE PROGRAMMING IN BASIC

(@ IF Y > 0 AND Y < 1 THEN PRINT "BETWEEN ZERD AND ONE"
IF Y <= 0 OR Y >= 1 THEN PRINT "NOT BETWEEN ZERO AND ONE"

Having seen how more than one comparison can be made within a single
IF. . .THEN statement, now consider the other end of the comparison statement and
how to have more than one instruction executed in the case of a true IF. . .THEN
comparison.

TRS-80 BASIC and BASIC-80 permit you to do nearly anything after an
IF. . .THEN expression, frequently encouraging you to place multiple statements on
one line.

C + 1 : GOTO 10

150 IF X<Y THEN PRINT "TOO LOW": LET C =
= 0 : GOTD 10

160 IF X>Y THEN LET C = C + 1: LET G

When you use this MICROSOFT BASIC feature, keep in mind that you may be
hindering the portability of your program. If this doesn’t concern you, forget it! We
do urge you to complete your entire “activity” on one line after an IF. . THEN
statement, otherwise the program is extremely awkward to follow. If you cannot
complete your activity on one line, then GOTO a section where all of the activity can
be done together. Follow the acceptable example:

Bad

150 IF X<Y THEN LET X = X+D: LET Y = Y/N: GOTO 200
160 IF X>Y THEN LET X=X = D: Y = Y/N: GOTO 10

200 LET C=C+1 : PRINT "TOO LOW": GOTO 10

Acceptable

150 IF X<Y THEN 200
160 IF X>Y THEN 250

200 LET X X+D

210 LET Y Y/N

220 LET € = C + 1 ... or all on one line
230 PRINT "TOO LOwW"

240 GOTO 10

Most of us who program for fun ignore what is going on inside the computer
because we don’t have to pay attention. However, on occasion, little “bugs,” in-
congistencies, and our own ignorance can cause some interesting (and frustrating)
problems. BASIC software sometimes does funny things, barely detectable because
the problem exists at the seventh or eighth decimal location, which may be invisible
to the BASIC user. We once spent hours trying to fix a “money changing” program
that kept giving us 4.9999 pennies change instead of a nickel. (This points out a very
important lesson: Your BASIC language interpreter does not always do things with

AN IMPORTANT REVIEW OF BASIC STATEMENTS 33

the accuracy and consistency you might expect.) Therefore when you are comparing
numeric values, especially numbers that have been computed by your computer, try
to compare using less than (<), greater than (>), or not equal (< >).

Good

IF X<1125.75 THEN...
IF X>1125.75 THEN...
IF X <> 1125.75 THEN.....

Not wise
IF X = 1125.75 THEN....

(a) Why should you avoid IF. . THEN comparisons for equality?

(a) Internal round-off errors may produce very slightly inaccurate values in calcula-
tions. Therefore, a comparison for equality might fail (be false) where you would
expect the comparison to be true.

IF. . .THEN String Comparisons and the ASCII Code

So far the only comparisons used in IF. . .THEN examples have been between two
numeric expressions or values. Comparing strings in IF. . .THEN statements begins to get a
little tricky. However, comparisons for equality or inequality are fairly straightforward.
Examine these statements:

220 LINE INPUT "ENTER YDUR LEGAL NAME:"; N$
230 IF N$ = "STOP" THEN 999

Notice that in line 230 a string variable (N$) is compared with a string constant
(“STOP”). A string constant in a comparison must be enclosed in quotation marks.
In order for a comparison for equality between two strings to be true, each and every
character in the two strings must be identical (upper and lower case are different), and
the length of the strings and any leading or trailing spaces must be the same. Any
difference whatsoever, and the equality comparison will be false.

34 DATA FILE PROGRAMMING IN BASIC

In line 230 above, the string assigned to a string variable was compared to a
string constant. Likewise, the contents of two string variables can be compared.

310 LINE INPUT "ENTER THE OLD TITLE:"; Ts
320 1IF T$ <> D$ THEN PRINT "WRONG TITLE., TRY ANOTHER"

The difficulty in string comparisons comes with the “less than” or “greater
than” comparisons. These have application in sorting strings, alphabetizing data, or
inserting new information into an alphabetically organized data file. In IF. . . THEN
comparisons, BASIC compares the two strings one character at a time, from left to
right.

Rather than comparing within the construct of a twenty-six-character alphabet,
BASIC uses a standard code that represents every possible signal a terminal keyboard
can send to the computer (and vice versa). Each key and each permitted combination
of keys, such as the shift or CONTROL key along with another key, sends a
unique electronic code pattern to the computer. These patterns are represented by
the decimal numbers 0 through 127 in the ASCII Code chart. Mercifully, here is one
instance of standardization throughout the computer industry. ASCII stands for
American Standard Code for Information Interchange. The ASCII code’s 128-character
set includes the upper and lower case letters of the alphabet, numbers, punctuation,
and other special characters and special function keys. The ASCII code also includes
128 other special codes that are numbered 129 through 255, that do not concern us.
Find the ASCII chart in the Appendix, and refer to it for your understanding of the
following.

Notice that the numbers O through 9 have ASCII codes of 48 to 57. The alpha-
bet has ASCII codes of 65 to 90 for upper case letters; lower case starts at 96. There-
fore, the lower case equivalent of an upper case letter is the upper case letter’s ASCII
code number plus 31.

A=65s0a=65+31=96

This fact will be of use later.

What actually happens in an IF. . .THEN string comparison? BASIC compares
the ASCII code number for each character in the two strings, comparing just one
character at a time. As soon as an inequality exists between characters, the string
with the character that has the lower ASCII code number will be considered “less
than™ the other string. BASIC does not add up the ASCII code values for the two
strings being compared to determine “less than” or “‘greater than.” The following
chart shows the results of comparing a series of strings assigned to A$ and BS.

AS BS

ABC ABD AS 1S LESS THAN BS

MN MNO AS IS LESS THAN BS

STOP STO B IS LESS THAN As (A$ is greater than BS)

123A 123a A% IS LESS THAN Bs$

AN IMPORTANT REVIEW OF BASIC STATEMENTS 35

In the comparison process, if one string ends before the other and no other
difference has been found, then the shorter string is said to be “less than” the longer
one. One result is that a null string is always “less than” a non-null string, since the
ASCII code for null is zero. Here are some more examples of string comparisons:

AS B$

SMITH SMITHE A$ 1S LESS THAN BS

ALCOTJONES ALCOT A$ 1S GREATER THAN Bs (B$ is less than AS$)
JOHNSEN JOHNSON A$ IS LESS THAN BS

KELLOG KELLOGG A$ IS LESS THAN BS

EQ-8 EQ 8 B$ IS LESS THAN AS

Now it’s your turn to familiarize yourself with ASCII code comparisons. Fill in the
blanks with the appropriate string variable.

cs DS
(a) Jacos JACOBS s greater than
(b) LOREN LORAN is less than

(c) SMITH-HILL SMITH HILL e s less than

(d) aBLE12 ABLE~12 is less than
(¢) Theater THEATER . isless than
(f) o9s.2 95-2 is less than
(a) Dbs,cs D$ has more characters, others being equal

(b) Dbs.cs Letter A is less than letter E

(c) os,cs A space is less than a hyphen

(d) pbs,cs A hyphen is less than the number 1

(e) os,cs Uppercase letters are less than lower case letters
@ os, cs A hyphen is less than a decimal point

Two string functions are used in conjunction with the ASCII code. The ASC ()
function gives the ASCII code number for the first character of the string contained
in the parentheses or for the first character of the string assigned to the string variable
contained in the parentheses. The ASCII number produced by ASC () may be
assigned to a variable, displayed by a PRINT statement, used in arithmetic expressions,
and used as a value in an IF. . .THEN comparison.

LET X = ASC(AS$)

LET X = ASC("ANTWERP")
PRINT ASC(AS)

IF ASC(N$) = O THEN...

36 DATA FILE PROGRAMMING IN BASIC

Give the ASCII number or value that will be printed for each of these program
segments. Refer to the ASCIH chart in the appendix.

(@) 10 LET Ds = "DOLLAR" (b) 10 PRINT ASC("YES")
20 PRINT ASC(DS$) RUN
RUN

() 10 LET Fs = "FRANK" (d) 10 PRINT asc(" ™)
20 LET s = "JUONES" RUN
30 LET N$ = Ls + "," + Fs3

40 PRINT ASC(FS$)
50 PRINT ASC(LS$)
60 PRINT ASC(NS$)

RUN
(a) 68
(b) 89
) 70
74
74
(d 32

Describe the string that must be assigned to A$ in order for the following IF. . . THEN
comparisons to be true.

(a) IF ASC(A$) = 53 THEN 510
(b) IF ASC(A$) <> 48 THEN 810
(c) IF ASC(A$) = ¢ THEN 950

(a) First character in A$ is 5
(b) First character in A$ is not zero
(¢) AS$ must be a null string

AN IMPORTANT REVIEW OF BASIC STATEMENTS 37

The opposite of the ASC() function is the CHR$() function. An ASCII number
is placed in the parentheses. It causes the computer to send that ASCII code signal
to the terminal, which can cause the printing of an alphanumeric character. CHRS()
is also used to send special control signals to the CRT screen or printer (ASCII num-
bers O through 31). On the TRS-80, it can be used for graphic control codes (ASCII
numbers 129 to 191 — see your reference manual). You can also use CHR$() in a
PRINT statement to print characters corresponding to the ASCII number in the
CHRS$() parentheses.

B840 PRINT CHR$(69); CHR$(78); CHR$(68)

(a) By running this program or by reference to the ASCII chart, what will this

program line print?

CHRS$(7) rings the bell or sounds the beeper on many terminals. CHR$(34)
produces quotation marks in situations where they would not otherwise be printed
around a string. Remember these possibilities. Check the ASCII codes, especially 0
through 31, in your computer reference manual. There may be some interesting
capabilities to explore.

THE LEN FUNCTION

Recall that while the maximum length of a string that can be assigned to a string
variable is 255 characters, the actual length of the string is the number of characters
currently assigned to a string variable. BASIC provides a function to “count” and
report the actual length of a string, or of a string assigned to a particular variable; a
function appropriately called the LEN (for LENgth) function. LEN can be used in
a print statement to print the number of characters in the string in question. Since
the execution of LEN results in a numeric value, it can be assigned as a value to a
numeric variable, used as a value in an IF. . .THEN comparison, or used in calcula-
tions.

38 DATA FILE PROGRAMMING IN BASIC

For example:

10 LET G$ = "WHAT A GAS"
20 PRINT LEN(GS)

RUN
10

100 PRINT LEN("NORTHERN MUSIC")

RUN
14

10 LET H$ = "1582 ANCHORAGE DRIVE"
20 LET A = LEN(HS)
30 PRINT A

RUN
20
150 LET R$ = "veES"
160 IF LEN(R$) = 3 THEN PRINT "GO ON TO THE NEXT QUESTION"
RUN

GO ON TO THE NEXT QUESTION
10 LET M3 = "AMERICAN"
20 LET N$ = "FOREIGN"
30 PRINT LEN(MS$) + LEN(NS)

RUN
15

Show the results of executing each of the following program segments:

(@) 10 LET Cc$ = " "
20 PRINT LEN(CS)

RUN
(b) 10 LET Fs = "FRANK"
20 LET Ls = "JONES"

30 LET N$ = Ls + ", " + Fs
40 PRINT Ns
50 PRINT LEN(NS$)

RUN

AN IMPORTANT REVIEW OF BASIC STATEMENTS 39

(a) 1
(b) JONES, FRANK
12

SUBSTRING FUNCTIONS:
VERSATILE TOOLS TO MANIPULATE STRING DATA

Three MICROSOFT BASIC string functions (MID$, RIGHTS, LEFTS$), allow you to
manipulate the parts of a string, called substrings. The MID$ function is by far the
most useful substring manipulating function. It works for two different processes. It
allows you to select substrings from within a larger string. The MID$ selection func-
tion has the following forms:

(1) MIDS("CHARGE IT", 1,6)
(2) w™ips(Ts, 3, 15)
(3) m™ips(ps, 10)

(4) mips(ws, A, C*D)

In example (1), the MID$ function selects characters 1 through 6 inclusive as the
substring within the string constant CHARGE IT, with the substring starting at char-
acter position 1 (the C) and including six characters total, making the substring
CHARGE. Example (2) assumes that a string has been assigned to T§, and the sub-
string comprises fifteen characters of the T§ string, starting with the third character
in the string and continuing on to the 15th character after the third one. In example
(3), the “last character position’ notation (the last value inside the MID$ parentheses)
has been omitted, which tells the computer that the substring will start at character
position 10, and will include all the rest of the string to the right of the character at
position 10. Example (4) shows that the starting position for the substring, as well
as the number of characters to be included in the substring, can be represented by
variables or expressions that evaluate to a numeric value. Of course, these variables
must have been previously assigned values, just as the string variable must have pre-
viously been assigned a string. So in general, the MID$ function has the form

MID$(string variable or constant, substring starting position, how many
characters in the substring from the start position).

Note that the three parameters in the MID$ function are separated by commas.
The first is usually a string variable to which a string has previously been assigned.
The second parameter is the starting position for the substring. The third parameter
does not tell the last character position number in the substring, but rather tells how
many characters total to include in the substring — a point that sometimes confuses
people.

In addition to the selection function, MID$ is also used as a replacement func-
tion.

40 DATA FILE PROGRAMMING IN BASIC

For example:

LET MIDS$({N$,2,6) = B$ where N$ = "5555555558" and Bs = "XXXXXX"

This statement tells the computer to replace (or substitute) six characters of the string
assigned to N§ with the characters in B§. If B§ contains less than six characters, only
those assigned to B$ will be replaced in N§. If the substitution would overlap the end
of the string currently assigned to B$, then the new N§ (after substring substitution)
could have a longer actual length than it did originally (before the execution of the
statement). After execution of the example replacement statement above, N$ =
SXXXXXXSSS.

On the other hand, if B$ in our example above actually contained only three
characters (B$ = XXX), then only those three characters would end up in the new
string assigned to N$, like this: N§ = SXXXSSSSS. Another example:

LET MID$(D$,8,12) = "1046 ELM ST."

This instructs the computer to replace twelve characters, starting with character posi-
tion 8 and going to position 19 of the string assigned to D§, with the string constant
1946 ELM ST. Yet another example:

LET MID$(G%$,5,5) = MID$(B%,8,5)

This tells the computer to replace characters 5 to 9 (five characters starting at position
5) of the string assigned to G$, with characters 8 through 12 of the B$ string. Notice
that the string info which the replacement is to be made always appears to the left of
the equal sign in the assignment statement. In the last example above, the string
assigned to G$ is changed, while the string assigned to B$ remains unchanged. You
try it: Fill in the blanks for Z$ after the execution of the statement(s).

Z$ BEFORE Z% AFTER
(a) 160 LET MIDS$(2%,8,6) =
"SMITHE" JOANNE JAYSON

(b)190 LET Ns = "12879"

200 LET MID$(Z2%,1,5) = N3 21879 CORNER ST.
()300 LET x = 8 : LET ¥ = 6

310 LET D$ = "CANCEL"

320 LET MID$(Z$,X,Y) = D% 0794025072279
(d)az0 LET vs = "NY 08106"

430 LET MID$(Z%,14,5) =
NEW YORK NY 01202

MIDS(Y$,5,5)

AN IMPORTANT REVIEW OF BASIC STATEMENTS 41

(a) JOANNE SMITHE

(b) 12879 CHORNER ST.
() o794025CANCEL

(d) NEW YORK NY 08106

Note that MIDS$ is a selection or replacement function. Therefore, it requires some-
thing to be there already, that is, the string variable referred to inside the parentheses
must have previously been assigned a string. You cannot use MID$ to place data into
a null string or a string variable with no string previously assigned to it. The example
below, if executed, would result in an error condition because the actual length of
X$ is zero.

Iilegal example:

210 LET xs = "*"
220 LET MID$(x$%$,1,6) = "TRS-80"

No replacement could take place because a six-character string cannot replace a zero-
character (nuil) string.

Examine this next program segment carefully, and then answer the question below.
Assume that you wish to change the last name of Mariam Martinson to Jones. (Say
that Mariam got married and took a new last name.) It’s tricky.

120 LET N$ = "MIRIAM MARTINSON"
130 LET T$ = "JONES"

140 LET MID$(N$,8,9) = T$

150 PRINT N$

(a) What string ends up assigned to N$?

() MARIAM JONESNSON

But that’s not what we wanted. We were trying to replace MARTINSON with
JONES. Instead, we got the new name combined with part of the old name in a
strange way.

What happened? Even though the MID$ function said to replace nine characters
starting with position 8, only five characters in N§ were replaced because that was the
entire LENGTH of T$. The point is that the remainder of the characters in N§ were
not replaced with blanks, as we had hoped (and you may have assumed in answering
the question above.)

42 DATA FILE PROGRAMMING IN BASIC

Notice the use of the MID$ selection function in PRINT statements in the
program below. This is different than using MIDS as a replacement function.
Remember, it allows you to select and print any part or substring of the string assigned
to the string variable in the MID$ parentheses. The other two values or parameters
inside the parentheses still indicate where the substring to be printed starts and how
many characters it includes.

150 LET N$ = "FOGHORNE WHILDEFLOWER"
160 PRINT MID$(NS$,1,8)

170 PRINT MID$(N$,10,12)

180 PRINT N$

RUN

FOGHORNE

WHILDEFLOWER

FOGHORNE WHILDEFLOWER

Notice the use of MID§ as a selection function in lines 160 and 170 above. In
contrast to the replacement function of MID$, the selection function in no way
changes the string assigned to N$, as demonstrated by the execution of line 180, even
after substrings from N§ have been selected and printed by lines 160 and 170. This
same selection function can be used to assign a substring from a string assigned to a
string variable without changing the original string from which the substring was
selected. Notice in the program segment below that a substring from an existing string
can be assigned to a new variable without changing the string from which it was
selected. F$ (for first name) and L$ (for last name) are selected from the entire name
(N$) without changing N§.

"FOGHORNE WHILDEFLOWER"
MID$(NS$,1,8)
MID$(NS$,10,12)

150 LET N$
160 LET F$
170 LET L %
180 PRINT N$

190 PRINT "FIRST NAME IS "; F$
200 PRINT "LAST NAME IS "; Ls$

oo

(a) Show the RUN for the program segment above.

(b) Which character in N§ is not selected for inclusion in either F$ or L$?

AN IMPORTANT REVIEW OF BASIC STATEMENTS 43

(a) RUN
FOGHORNE WHILDEFLOWER
FIRST NAME IS FOGHORNE
LAST NAME IS WHILDEFLOWER

(b) The space at character position 9 of N$

The LEFT$ and RIGHTS string functions are not as versatile as MID$ and are
not used as much in our programming. They both work the same way, however, as
shown in these program segments:

160 PRINT LEFTS$(AS,8) means print the leftmost eight characters of A$
(the first eight characters in the string assigned to AS$);

170 LET R = 12 means assign to B$ the twelve rightmost characters
180 LET B$ = RIGHTS(AS,R) of A$ (the last twelve characters in the string
assigned to A$).

These examples demonstrate the substring selection capabilities of LEFT$ and
RIGHTS$. These two functions cannot be used for replacing information in an existing
string as we were able to do with the MID$ function. They are strictly selection
functions, selecting one or more characters from one end or the other of an existing
string to treat as a substring.

We often use LEFTS$ for convenience to check for a user’s YES or NO response
to an INPUT prompting question. Using an IF. . THEN statement, we have the
computer look at the first character of the response string to determine whether or
not the answer was YES, as shown in the following program segment:

240 LINE INPUT "DO YOU NEED INSTRUCTIONS (YES OR NO)?"; RS
250 IF LEFT$(R$,1) = "Y" THEN 600

(a) What responses could a user make to the INPUT prompt above in order for the
IF. . .THEN comparison to be true?

(a) Could type YES or Y or any string that started with the letter Y.

44 DATA FILE PROGRAMMING IN BASIC

We have found less use for the RIGHT$ function than for MID$ or for LEFTS,
but here is an example. Remember, the numeric value inside the RIGHT$ function’s
parentheses means to start counting the characters for the substring at the right-most
end of the string from which the substring is being selected, counting toward the
beginning of the string.

240 LINE INPUT "WHICH HIGH SCHOOL CLASS DID YOU GRADUATE FROM?"; Ys
250 PRINT "YOU GRADUATED IN 19"; RIGHTS(YS$,2)

Assume that several people responded to the INPUT prompting question when the
above program segment was RUN. Show what the computer will print for each user’s
response.
(a) User responds: CLASS OF 1938
Line 250 prints:
(b) User responds: CLASS OF ’64
Line 250 prints:
(c) User responds: 1958

Line 250 prints.
(d) User responds: FORTY EIGHT

Line 250 prints:

(@) YOU GRADUATED IN 1938 (c) YOU GRADUATED IN 1958
(b) YOU GRADUATED IN 1964 (d) YOU GRADUATED IN 19HT

String Searches With INSTR

Another useful string function is INSTR, the INSTRing searching function. The
INSTR function is used to pinpoint the location of a substring of one or more char-
acters within a longer string. In effect, the string is checked character by character
until the substring is found. The value produced by the INSTR search indicates the
character position of the first character of the substring within the string being search-
ed. An example or two will clear up the mystery.

250 LET X = INSTR("JOEJEFF", "JEFF")
The first string inside the parentheses is the string being search. The second string

is the string being searched for. In this case, X = 4 since JEFF, the string we are
searching for, begins at character position 4 of the string being searched, JOEJEFF.

AN IMPORTANT REVIEW OF BASIC STATEMENTS 45

The INSTR function can also look like this:
INSTR(AS,BS)

where A$ is the string being searched, and B$ is the substring being looked for. The
string variables A$ and B$ must have previously been assigned strings, of course. Note
that the string, substring, or both can be string constants or string variables. Examples:

INSTR(AS, "TON™)
INSTR("WASHINGTON", BS$)
INSTR("WASHINGTON", "TON")

An INSTR value of @ (zero) results if the substring is not found. If the substring is
found, the character position of the first character of the substring within the string
being searched is pinpointed by the INSTR value. Example:

10 LET A3 = "WASHINGTON"
20 LET Bs = "ASH"

30 LET ¢C$ = "TON"
40 LET X = INSTR(AS$,BS$)
50 PRINT X
60 LET Y = INSTR(AS%,CS$)
70 PRINT Y
RUN

2

8

Note that the INSTR function can search for a substring as short as one character.
INSTR only reports the first character position of the first occurrence it encounters
of the substring being searched for.

(a) In the program above, the substrings being searched for in lines 40 and 60 are
three characters long. Then how can the value of X be 2 for lines 40 and 507

(a) The INSTR value corresponds to the character position of the first character in
the substring ASH that is found starting at character position 2 in WASHINGTON,

46 DATA FILE PROGRAMMING IN BASIC

The following program shows more about how INSTR() works and some pointers
about its use.

250 LET M$ = "JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC"
260 LINE INPUT "WHICH MONTH?"; M1$

270 LET L = INSTR(MS$, M13%)

280 PRINT "POSITION: "; L

290 GOTO 260

RUN

WHICH MONTH?IMAR
POSITION: 7
WHICH MONTH?AP
POSITION: 10
WHICH MONTH?JU
POSITION: 16
WHICH MONTH?JULY
POSITION: 0
WHICH MONTH?A
POSITION: 2

Note that with only two letters entered, INSTR finds JU in JUN, even though
JUL would also qualify. INSTR responds with the first occurrence of the string being
searched for. But when we entered JULY, INSTR responded with @, indicating that
the string could not be found. When we entered A, the first occurrence was in JAN.
For this demo you need to enter at least the first two letters, and three letters to
ensure an accurate match.

Related techniques can be used to search for wanted and unwanted characters in
a string without using INSTR. Find the clever use of the FOR variable to locate the
end of a substring where you know a space separates the substring.

740 LET F$ = "JUANE FONDA"
750 FOR $ = 1 TO LEN(FS$)
760 IF MID$(F$,S,1) = " " THEN 780

770 NEXT S
780 PRINT MIDS$(F$,1,S5~1)

(a) What is the upper limit for S (the FOR control variable)?
(b) What is the length of the substring selected by the MID$ function in line 7607

(c) What is the length of the first name substring in F§?

(d) In what character position in F$ is the space?

(¢) Why doesn’t S-1 in the MID$ function in line 780 cause one character in the

name to be lost?

(f) What is printed by line 7807

AN IMPORTANT REVIEW OF BASIC STATEMENTS 47

(@) LEN(F$) = 10

(b) one character

(c) four characters

(d) character position 5

(e) Because S gives the character position of the first space, not the last letter, in the
F$ “first name” substring.

() JANE

MULTL-BRANCHING WITH ON. . .GOTO

The ON. . .GOTO statement allows the computer to branch to a number of different
statements throughout a program. The format for the statement is a list of line
numbers:

ON X GOTO 310, 450, 660, 660, 660, 720, 830, 910
Note: X = any variable or expression from which a value will result.

If the value of X is 1 when the ON. . .GOTO statement is encountered and
executed, the computer branches (goes to) the first line number in the list of line
numbers (in our example, line 310). If the value of X is 2, the second line number
in the list is branched to. As many line numbers can follow GOTO as will fit in a
statement line. Notice also in our example that if X = 3, 4, or 5, the same line num-
ber (660) will be branched to.

If the value of X is a zero, a negative number, or larger than the number of line
numbers in the list, then:

(1) either the ON. . .GOTO statement will be skipped without execution and the
next statement executed, or

(2) in some BASICs, the computer will stop execution and give an error message.

Run some tests to see how your BASIC reacts for negative, zero, fractional, and “too

large” values for the ON. . .GOTO variable.

48 DATA FILE PROGRAMMING IN BASIC

Here is a technique using ON. . .GOTO and the INSTR function to determine
which choice has been made by a user. The situation could be a “menu” of choices
from which the user must select one, or a multiple choice question where the user
selects one response.

250 REM MENU PRDGRAM DEMO

260 LINE INPUT "DO YOU NEED INSTRUCTIONS?"; RS

270 IF R$ <> "YES" THEN 500

280

290 :

300 REM MENU SET

310 CLS

320 PRINT "THESE ARE THE THINGS THIS PROGRAM WILL DO:"
330 PRINT "A. BEGIN WRITING TO A NEW FILE"

340 PRINT "B. ADD TO EXISTING FILE"

350 PRINT "C. CHANGE EXISTING FILE"

360 PRINT "D. PRINT CONTENTS OF EXISTING FILE"

370 PRINT "E. SELECT DATA FROM FILE AT OPERATORS REQUEST"
380 :

390 LINE INPUT "ENTER YOUR REQUEST (A-E):"; RS

400 ON INSTR("ABCDE", R$) GOTO 500,600,700,800,900

410 PRINT "ENTRY ERROR. PLEASE ENTER AS DIRECTED": GOTO 390
420

430

Here is an alternate method to arrive at an ON. . .GOTO value in a “menu”
selection situation. In the following program segment, the ASC() function is used to
convert a letter entered by the user to an ASCII value that is used to determine the
value for an ON. . .GOTO statement. The ON. . .GOTO is a multi-branching instruc-
tion. In line 260, if the value of R is 1, then the program goes to the first line number
given after GOTO. If R = 2, then the program branches to the second line number
given, and so on. The value of R must be greater than 1 and no higher than the
number of line numbers that follow GOTO.

200 :
210 ¢

220 =

230 LINE INPUT "ENTER YOUR CHOICE, A-E :"; RS

240 LET R = ASC(RS$) ~ 64

250 IF R < 1 OR R > 5 THEN 270

260 ON R GOTO 300,400,500,600,700

270 PRINT "ENTRY ERROR. PLEASE REENTER AS REQUESTED": GOTO 230
280 :

290

(2) In the program above, why is line 250 included?

AN IMPORTANT REVIEW OF BASIC STATEMENTS 49

(a) If R evaluates to less than 1 due to a data entry error or larger than 5, an erfor
would occur; so the checking is done by line 250,

FOR NEXT STATEMENTS

It is preferable to use 2 FOR NEXT loop when you have a controlled, repeating
sequence of instructioras.

Preferred Undesirable
100 FOR X = 1 TO N 100 LET K = 1
110 PRINT x, X12 110 PRINT X, xt2
120 NEXT X 120 LET X = X+1

130 IF X>N THEN 200
140 GOTO 110

As you can see, the FOR NEXT loop is more space efficient (it could even have been
done in one line), it looks better, and it is easier to read.

A general rule when using FOR NEXT loops is: DO NOT EXIT from the middle
of a FOR NEXT loop, except to GOSUB to a subroutine. Leaving the controlled
loop makes the programm difficult to read and hard to understand. Further, internally
your computer wants to complete the entire FOR NEXT sequence. If you exit
prematurely, there is no certainty that your computer will behave “normally” the next
time it encounters the loop variable (X in the example above). This uncertainty can
cause some very serious program errors that are extremely hard to detect. An exit to a
subroutine is acceptable because a subroutine will RETURN the program to the inside
of the FOR NEXT loop to continue in sequence, as if there was no exit at all.

Never

100 FOR X =
110 IF A(X)
120 NEXT X

1 70 N
= B{(X) THEN 200

Not desireable

100 FOR X = 1 TO N

110 IF A(X) = B(X) THEN 130
120 NEXT X

130 LET S = S + 1

140 GOTO 120

Preferred

100 FOR X = 1 TO N

110 IF A(X) <>B(X) THEN 130
120 LET S = S + 1

13C NEXT X

50 DATA FILE PROGRAMMING IN BASIC

You can usually write your program to include everything you need to do inside the
loop, rather than leaving the loop. (There will be exceptions.)

(a) Write a program segment using nested FOR NEXT loops that will print the word
HELLO three times, but will print the word GOODBY four times after each
appearance of the word HELLO.

(2) 10FORX=1TO3
20 PRINT “HELLO”
30 FORY =1 TO 4
40 PRINT “GOODBY”
50 NEXT Y
60 NEXT X

MULTIPLE STATEMENT LINES

Many language features in MICROSOFT BASIC are not available on other computer
systems. Some of these features speed up the program’s run time, others save memory
space, and some do both. Some features enhance program readability while others
confuse the reader. A popular feature is the ability to place multiple BASIC statements
on one line separated by a colon, as we showed earlier in discussing IF. . .THEN.

140 FOR X = 1 TO 10: PRINT X, Xt2: NEXT X
or

200 IF X=Y THEN PRINT "YOU WON! ": GOTO 10
210 PRINT "SORRY, WRONG NUMBER": GOTO 60

AN IMPORTANT REVIEW OF BASIC STATEMENTS 51

lines:

A few cautions and suggestions are applicable as you use multiple statement

Multiple statement lines are often hard to read and sometimes hard to understand.
If you later change a program, readability may be a problem. It is more clear

to use one statement to a line.

If you must use multiple statement lines, carry out a complete procedure or
action on one line, whenever possible. Carryover to other lines makes reading
more difficult and less clear.

Finding program errors buried in multiple statement lines is difficult.

Understand completely how IF. . .THEN statements work in a multiple statement
line. In line 200 above, if X does equal Y, then “You won” will be printed and
the program will branch to line 10. If the X=Y condition is false, line 210 will be
executed next. Some people incorrectly presume that GOTO 10 will be executed
whether the condition is true or false.

REMARK statements must be the last statement on a multiple statement line.
Any executable statement after a remark will not be executed.

Special consideration of the GOSUB statement in multiple statement lines is

warranted. Remember that each GOSUB statement must have a corresponding
RETURN statement, that appears as the last statement in the subroutine the GOSUB
branches to.

Say, a GOSUB is executed when an IF. . .THEN condition is true. After com-

pleting the subroutine, the computer must always be instructed to RETURN. The
statement it returns to will be:

(1) the next statement after GOSUB if it is a multiple statement line, or

(2) the next lined numbered statement in normal line number order.

(@)

Assume that the comparison in line 120 below is true and the GOSUB statement
is executed. Which statement will be executed next after the RETURN from

subroutine execution?

120 IF X = 2 THEN GOSUB 510 : GOTO 360
130 PRINT "X IS LESS THAN Two"

GOTO 360 is the next statement executed after the RETURN.

52 DATA FILE PROGRAMMING IN BASIC

CHAPTER 2 SELF-TEST

1. Why do the authors recommend using “greater than” and “less than” compari-
sons in IF. . .THEN numeric comparisons, rather than comparisons for equality?

2. When must quotation marks be placed around string data items in a DATA
statement?

3. How can a null string be assigned to an INPUT or LINE INPUT string variable?

4. Show the results of a RUN of the following program:

10 LET A$ = "ALFRED"

20 LET B$ = "CONTRACT"

30 LET C$ = "32¢"

40 PRINT ASC(AS$), ASC(BS$), ASC(CS)
RUN

5. Describe the string that must have been assigned to D$ for each of these com-
parisons to be true:

(@) IF ASC(DS) < 4B OR ASC(DS) > 57 THEN 660
(b) 1F ASC(DS) > 64 AND ASC(DS) < 21 THEN GOSUB 1520

6. What value will the LEN function show for a string to which fifteen spaces have
been assigned?

AN IMPORTANT REVIEW OF BASIC STATEMENTS 53

10.

11.

L

Show the RUN for the following program:

10 LET M$ = "STAR TREK"

20 LET N% = "WARS"

30 LET G$ = MID$(MS$,1,5) + N$

40 LET MID3(M$,6,4) = MIDS$(NS,1,4)

50 PRINT G3
60 PRINT M3
RUN

Give an example of a simple numeric variable and a simple string variable.

Give a reason for avoiding multiple statements in one program line.

Examine the following statement:
120 IF X > 10 THEN GOSUB 810 : GOTO 110

After executing the subroutine starting at like 810, to which statement will the
computer return?

If a variable name has more than two alphanumeric characters, how many of
those characters does the computer use to identify the value assigned to that
variable?

Answer Key

Round-off error in the computer’s computational process may introduce tiny
errors that make expected values slightly more or less. Therefore, an equality
comparison may fail where you would expect it to succeed.

54

DATA FILE PROGRAMMING IN BASIC

10.

11.

When the string data item includes a comma as part of the string or leading
spaces are to be included as part of the string.

By pressing the ENTER key without entering anything else from the keyboard.
65 67 51

(a) First character of D$ must not be a number (§ to 9).
(b) First character of D§ must be a capital letter (A to Z).

15 (Spaces count as characters in a string.)

RUN
STAR WARS
STAR WARS

Numeric variable: A (or any letter of the alphabet); string variable: A$ or any
letter of the alphabet followed by a dollar sign.

May make it harder to read the program; may make errors in programming harder
to detect. (either answer)

GOTO 110

In TRS-80 BASIC, only the first two characters; in MICROSOFT BASIC-80, up
to forty characters.

CHAPTER THREE

Building Data Entry and
Error Checking Routines

Objectives: When you finish this chapter, you will be able to write statements in a
data entry program module to check the following aspects of data items:

Proper length

Non-response (null strings)

Type of data (numeric or alphanumeric)
Inadvertant inclusion of wrong characters
Parameters for numeric data

In addition, you will be able to write data entry modules that:

Have clearly stated prompts

Use reasonable data fields

Concatenate data items into a single field

Check and “pad” entries, as necessary, for proper field length
Remove excess spaces from data taken from data fields
Replace data items contained in a data field

Provide complete explanations of a data entry error to the user

INTRODUCTION

If you are wondering when you are going to get into data files themselves, be patient.
Experience has shown that you need a good background in some special techniques
associated with data file programming which use BASIC statements you already know.
This will make it much easier and faster to learn the new BASIC statements and func-
tions specifically applied to data file handling. You shouldn’t have to struggle to
understand a new use for a familiar BASIC statement while trying to absorb the data
file statements and techniques, so please don’t gloss over this material.

Concern for data entry procedures was introduced in the section on INPUT and
LINE INPUT in the previous chapter. For our purposes data are defined as any
information that is or will be stored in a data file on disk or cassette. Common ex-
amples of data include mailing, subscription, or billing lists; inventories of retail
merchandise; accounting information; files of books, recordings, journal articles, or

55

56 DATA FILE PROGRAMMING IN BASIC

notes for a book; statistical information. Data entry includes the process of getting
such information into the computer so that it can be stored in a data file. Data files
usually contain large amounts of data, which, to be useful, must be accurate, valid,

and error-free in content and format. The accuracy and usefulness of your program
output depends entirely on the accuracy of the data in these files. Furthermore,
inaccurate or invalid data in a data file (or any place in a program) can cause your
program to interrupt, halt, or abort in an error condition in the middle of its run. If
your program terminates unexpectedly, there may be no telling what is happening inside
the computer. Printed reports can be only partially completed, entered data can be

lost or destroyed, data in files can be half processed; the list goes on.

The result of an unexpected program interruption can be catastrophic, though
it may not always be so. It is almost impossible to predict exactly what will happen.
Therefore, always do everything you can in your programming to avoid errors that
can precipitate program interruptions.

Unfortunately most errors occur at data entry time. That is why we emphasize
the use of data entry checking procedures in this chapter — procedures to guarantee
that data are entered as clean, valid, and accurate in content and format as your
ingenuity and knowledge of programming techniques can make it. Throughout the
remainder of this book “error-traps” and places where programming errors are likely
to occur are illustrated.

This chapter focuses on constructing the data entry module of a program. This
is where, usually with INPUT statements, the computer user is instructed to type in
information that is going to be placed in a new data file, or to tell the computer to
locate information in an already existing data file. After each response to an INPUT
statement, we will use one or more statements to check the response for possible
errors. These error-checking statements comprise the largest part of a data entry
program module.

DATA FIELD LENGTH
In an earlier chapter, the following example program appeared:

120 LET N$ = "MIRIAM MARTINSON"
130 LET T$ = "JONES”

140 LET MID$(N$,8,9) = T%

150 PRINT N$

When asked the question, “What string ends up assigned to N§?”” the answer was
MIRIAM JONESNSON. The problem was that the new last name was shorter than
the old last name, resulting in a combination of the two last names.

This problem, and many like it, are avoided by establishing a certain amount of
space; a certain number of character positions into which a given element of data or
data item is placed. Establish strings, or defined substring positions within one string,
where data must be located (data fields). A data field can be thought of as a string
that contains more than one data item. These data items always fit between two

BUILDING DATA ENTRY AND ERROR CHECKING ROUTINES 57

defined character positions within the string. A simple example would be one string
variable to which both a customer’s first and last names are assigned like this:

N$ = "VIVIAN VANCE"

The first name field is a six-character field in N§, occupying the first six character
positions of that string (1 through 6). The separator field is a one-character field,
located at character position 7. To be sure you understand, fill in the blanks in this
sentence.

The last name field has (a) ... characters and occupies character positions
(b) in the string assigned to (c)

(a) five

(b) 8tol2

(c) N$

Below is a graphic look at the fields in N§ with a slash (/) marking the field designa-
tion:

NS = o]
7 /‘ t
first name last name
separating
space

This particular data field works for the name in the example. However, the goal
is to establish reasonable data fields. In this case, a reasonable data field should hold
ANY first or last name that might be assigned to N§. Certainly, many names contain
more than six letters for the first name and five letters for the last. On-one hand, you
want to provide reasonably sized fields for the data. On the other hand, much storage
space will be wasted if you try to cover all possibilities. There really may be someone
named John Jacobjingleheimerschmidt, but reserving twenty-four character positions for
a last name data field could be wasteful of storage space; if 95 percent of the last
names in a data file have twelve letters or less, then half or more of the last name data
field goes unused 95 percent of the time. In a file of 1,000, 10,000, or 100,000
names, such as a mailing list, this can amount to a vast amount of unused string and
disk storage space.

Data field lengths must be adequate and reasonable. If all the catalog numbers
in an inventory data file are five characters, then obviously a five-character data field
is sufficient.

58 DATA FILE PROGRAMMING IN BASIC

To review, use a slash(/) to mark off the fields in a twenty-six character string
assigned to A$, where the data fields hold the city, state, and zip code (the last line
in a mailing address). Place a number in each field indicating which of the following
data items are to occupy that field.

1. City name (fifteen characters maximum)
2. Two separator spaces
3. State code (two-letter standard postal abbreviation)
4. Two separator spaces
5. Zip code (five characters)
(@) AS=_
(a) AS=_____ __ @ _______ / gz)_ @_/_i@,./ﬁ_@__

Next, consider the following data entry module to enter the city, state, and zip
code. These data items are to be placed into the data fields you just defined above.

100 LINE INPUT "ENTER NAME OF CITY:"; Cs3
110 LINE INPUT "ENTER STATE CODE:"; Ss
120 LINE INPUT "ENTER ZIP CODE:"; Z$

130 LET A% = C$ + " " + 58 + " " 4 7%

140 PRINT As

Notice the concatenating statement in line 130 — an attempt to get the data items into
data fields. But these two RUNs demonstrate a serious problem that relates to the
length of the city name.

(a) RuN
ENTER CITY NAME:IOWA CITY
ENTER STATE CODE:IA
ENTER ZIP CODE:52240
I0WA CITY IA 52240

(b) RuN
ENTER CITY NAME:SOUTH SAN FRANCISCO
ENTER STATE CODE:CA
ENTER ZIP CODE:94080
SOUTH SAN FRANCISCO CA 94080

Fill in the spaces to show the results of line 130 in the program for each of the sample
RUNs:

BUILDING DATA ENTRY AND ERROR CHECKING ROUTINES 59

The fact that all cities don’t have fifteen letters means that simple concatenation
of this data does not place it into the defined character positions for the data fields.
One approach is to assign a string of twenty-six spaces to A$ and then use the MID$
function to place each data item into its data field in the string. But SOUTH SAN
FRANCISCO would end up being truncated to SOUTH SAN FRANC, and even with
the fifteen-character limit, a more intelligent and preferable city name entry would be
S. SAN FRANCISCO, SO. SAN FRAN,, or even SOUTH S. F.

Checking Data Entries for Acceptable Length

One programming technique to check data entries for acceptable length uses the LEN
function in an IF. . THEN comparison. If the data requested always have a defined
number of characters, then an important check for mistakes in data entry would be
to see whether the entry has the exact length it should. A U. S. zip code always has
five characters, so a check for that data item would look like line 170:

160 LINE INPUT "ENTER ZIP CODDE:"; Z$%

170 IF LEN(Z3) <> 5 THEN PRINT "REENTER AS 5 DIGIT CODE"
GOTO 160

RUN

ENTER ZIP CODE:9543
REENTER AS S DIGIT CODE
ENTER ZIP CODE:954316
REENTER AS S DIGIT CODE
ENTER ZIP CODE:

If the entry for the zip code does not have exactly five characters, then a mistake has been
made, the user is so advised, and the computer repeats the prompting message and waits
for another entry. With new zip code formats, abit of reprogramming will be necessary.

Now you write a statement to check for proper length of the entry for the LINE
INPUT statement below:

(a) 140 LINE INPUT "ENTER STATE CODE:"; S$

150

(@) 150 IF LEN(SS) <> 2 THEN PRINT "REENTER AS STANDARD 2 LETTER
CODE" : GOTO 140

60 DATA FILE PROGRAMMING IN BASIC

How can you check something like a city name, which is allowed fifteen
characters or less? The city name could have less than fifteen characters, exactly
fifteen, or more than fifteen. If it has more, you could settle for having the data
entry truncated (cut off) after fifteen characters. Remember SOUTH SAN FRANC?
A better option is to advise the user that a shorter entry is needed and allow the user
to reenter the data item with an intelligent abbreviation.

120 LINE INPUT "ENTER CITY NAME:"; C$

130 IF LEN(CS$) > 15 THEN PRINT "REENTER AS 15 CHARACTERS OR
LESS" : GOTO 120

RUN

ENTER CITY NAME:SOUTH SAN FRANCISCO
REENTER AS 15 CHARACTERS OR LESS
ENTER CITY NAME:

Write a statement (similar to line 130 above) to check the entry for the LINE
INPUT statement below, where the data field for the entry is twenty characters maxi-
mum,;

(a) 310 LINE INPUT "ENTER STREET ADDRESS:"; S%

320

(a) 320 IF LEN(S$) > 20 THEN PRINT "REENTER AS 20 CHARACTERS OR
LESS" : GOTO 310

“Padding” Entries With Spaces to Correct Field Lengths

You are probably wondering how to increase the length of a data entry that has fewer
characters than its data field. The solution involves automating the addition of spaces
to “pad” the short entry (say, a short city name) with trailing spaces, so that the
resulting city name string, which includes the padding spaces, exactly fits the data field.
Remember, spaces occupy character positions and count as characters in the length of
the string. Line 140 shows how to pad with spaces:

120 LINE INPUT "ENTER CITY NAME:"; Cs

130 IF LEN(CS$) > 15 THEN PRINT "REENTER AS 15 CHARACTERS OR
LESS" : GOTO 120

140 IF LEN(CS$) < 15 THEN LET C$ = C$ + " " : GOTO 140

In line 140, if the city name entered and assigned to C$ has less than fifteen char-
acters, then a space is concatenated on to the end of the string. The new string
assigned to C$ is the old string plus a space. The statement “goes back to itself”
(GOTO 140) and keeps adding another space to the end of the C$ string until the
string contains exactly fifteen characters including the spaces. Clever?

BUILDING DATA ENTRY AND ERROR CHECKING ROUTINES 61

You write a statement to pad an entry with spaces if it has less than the eight
characters required to fit in its=data field.

(a) 120 LINE INPUT "ENTER YOUR FIRST NAME:"; F$

130 IF LEN(F$) > 8 THEN PRINT "SHORTEN ENTRY TO 8 CHARACTERS OR
LESS" : GOTO 120

140

(@) 140 IF LEN(F$) < 8 THEN LET F$ = Fg + " "

GOTO 140

Now apply the techniques you have been using in a data entry module.

(a) Write a program routine to request that a user enter an alphanumeric product
identification code with three characters, plus a product description with up to
twenty characters maximum, followed by a two-character code identifying the
person making the entries, using their first and last name initials. Once these
three data items have been entered and tested, combine the data into one string
of twenty-five characters assigned to a single string variable.

62 DATA FILE PROGRAMMING IN BASIC

(3) 110 CLEAR 300

120 INPUT "ENTER A THREE CHARACTER CODE"; Cs

130 IF LEN(CS) <> 3 THEN PRINT "ENTRY MUST BE 3 CHARACTERS.
PLEASE REENTER": GOTO 120

140 INPUT "ENTER DESCRIPTION"; DS

150 IF LEN(D$) > 20 THEN PRINT "ENTRY TOO LONG., PLEASE
REENTERY™: GOTO 140

160 IF LEN(D3) < 20 THEN LET D$ = D% + " ": GOTO 160

170 INPUT "ENTER YOUR TWO INITIALS™; N$

180 IF LEN(NS$) <> 2 THEN PRINT "PLEASE REENTER AS REQUESTED":

GOTO 170
190 LET R$ = C% + D$ + N$
200
210

What’s the advantage in setting up data fields in a single string and putting more
than one data item into it? The reasons will become clear in later chapters. For now,
the answer has to do with how data files can store information using some automated
data entry procedures and equipment and with the ease with which BASIC allows the
manipulation of substrings using MID$ for particular applications.

Examine the program below and answer the questions that follow it.

120 INPUT "ENTER CITY NAME"; T$

130 IF LEN(TS$) > 15 THEN PRINT "REENTER AS 15 CHARACTERS OR LESS
PLEASE": GOTO 120

140 IF LEN(T$) < 15 THEN T$ = T$ + " ": GOTO 140

150 INPUT "ENTER STATE CODE"; S$

160 IF LEN{(S$) <> 2 THEN PRINT "PLEASE REENTER AS 2 CHARACTERS":
GOTO 150

170 INPUT "ENTER ZIP CODE"; Z%

180 IF LEN(Z$) <> 5 THEN PRINT "REENTER AS 5 DIGIT CODE": GOTO 170

190 LET €% = T3 + " " + 85 + " " + 73

200

210 REM FOR DEMONSTRATION PURPOSES ONLY WE PRINT C$

220 PRINT C$

(a) What is the purpose of line 130?

(b) What does T$ =T$ + ““ ” in line 140 do?

BUILDING DATA ENTRY AND ERROR CHECKING ROUTINES 63

(¢) Inline 190, what is the purpose of “ ” in the concatenation?

(a) Tests to be sure user has not entered more than the acceptable number of char-
acters (fifteen) for the city name field.

(b) Fills in, adds on, or concatenates spaces from the last character of the T$ string
up to and including character field position 15. Changes T$ to a fifteen-character
string if there were fewer than fifteen characters in the string entered for TS.

(c) Places two spaces in the C$ string, one between the fields for city and state and
another between state code and zip code.

Stripping the Padding Spaces From Substrings in Fields

You know how to pad a string with extra spaces to arrive at the proper field length
for that data item. Now let’s explore a way to eliminate the extra blank spaces when
you extract data packed into a string. In the example where we wanted to change a
person’s last name, it was necessary to pad names with spaces to the proper field length
so that corrections could be made, if necessary, and so the first and last names could
be found separately. But for name printing purposes, you want to eliminate all the
extra blank spaces. The method shown below uses the INSTR function combined
with the MID§ function. In our example, N§ really consists of the eight characters
for F§, one space separating the two fields, and twelve characters for L. If the name
concatenated into N§ is Jenny Smiles, then N$ = “JENNY SMILES ”, including
the field-separating space at character position 9.

64 DATA FILE PROGRAMMING IN BASIC

The example program below shows how to use first and last names separately,
without extra spaces, in a computer-printed “thank you” letter.

3 LET Fs="J0HN

4 LET L$="ROBERTS

200 LET N$ = F$ + " " + L$: REM CONCATENATES ENTIRE NAME INTO NS$

210

220

230 :

700 REM ROUTINE TO ELIMINATE EXTRA SPACES AND PRINT

710 REM UNCONCATENATE N$

720

730 LET F$ = MID$(NS$,1,9)

740 LET L$ = MID$(N$,10,12)

750 LET S = INSTR(F$," "): REM S CONTAINS THE FIRST SPACE IN
FIRST NAME

760 PRINT "DEAR"; MID$(F$,1,5~1): REM PRINTS THE FIRST NAME IN
SALUTATION

770 :

780 LET S1 = INSTR(LS%," "): REM S1 CONTAINS THE FIRST SPACE IN
LAST NAME

790 PRINT "IT WAS SURE NICE TO SEE YOU AND MRS."; MIDS$(LS$,1,S51-1);
"AT THE GET TOGETHER THE OTHER EVENING"

800 :

1

RUN

DEAR ROSEMARY

IT WAS SURE NICE TO SEE YOU AND MRS, ROBERTS AT THE GET TOGETHER
THE OTHER EVENING

Notice in lines 730 and 740 how MIDS$ was used to make new string assignments
out of substrings contained in NS§.

(2) Inlines 750 and 780, what does the INSTR function search for?

(b) What value is assigned to S in the same lines?

(2) Looks for first space in string
(b) Assigns character position number of first space to S

BUILDING DATA ENTRY AND ERROR CHECKING ROUTINES 65

CHECKING ENTRIES FOR NULL STRINGS

One idiosyncracy of the INPUT statement already pointed out is that if the user
merely presses the ENTER key when the computer is waiting for a response to an
INPUT (or LINE INPUT) statement, a null string is assigned to the string variable. If
the computer then encounters a checking statement that pads the entry with spaces to
the proper field length, the entire entry would end up as a string of spaces and be
duly included in the data field for that entry. So checking data entries for null string
assignments is a must and should be part of your data entry program modules.

You can use two different techniques to test whether a string variable has been
assigned a null value. They work equally well.

IF A$ = "" THEN...
or
IF LEN(A$) = O THEN...

The decision the programmer must make (and it will vary with each situation) is what
to do after the THEN when the IF. . THEN condition is true and a null assignment
has been mistakenly made. Whatever you do, do not have the computer merely repeat
the INPUT prompt, as in the “what-not-to-do” example below.

170 INPUT "ENTER CUSTOMER NUMBER"; C$
180 IF LEN(C$) = 0 THEN 170

RUN

ENTER CUSTOMER NUMBER?
ENTER CUSTOMER NUMBER?
ENTER CUSTOMER NUMBER?

A user who persists in not entering the customer number gets no information as to what
is wrong. Always provide a helpful error message, perhaps even a beep, bell, or other
sound if available on the terminal, so the user knows something is amiss with the
present response or entry.

170 INPUT "ENTER CUSTOMER NUMBER"; (s
180 IF LEN(CS$S) = 0 THEN GOSUB 1010

1010 PRINT "PLEASE, WE MUST HAVE THE CUSTOMER NUMBER TO CONTINUE."

66 DATA FILE PROGRAMMING IN BASIC

With this information in mind, write the data entry routine that will produce the
prompts shown below. Test each data item for null response immediately after it is
entered.

(@

ENTER CUSTOMER NUMBER:
ENTER CUSTOMER NAME:
ENTER PRODUCT NUMBER:
ENTER QUANTITY ORDERED:

220
230

240
250

260
270

280
290

LINE INPUT "ENTER CUSTOMER NUMBER:"; Cs$

IF LEN(CS$) = O THEN PRINT "ENTRY ERROR. PLEASE REENTER" ; :
GOTO 220

LINE INPUT "ENTER CUSTOMER NAME:"; N$

IF LEN(NS$) = O THEN PRINT "PLEASE RESPOND AS REQUESTED" :
GOTO 240

LINE INPUT "ENTER PRODUCT NUMBER:"; P$

IF LEN(PS$) = 0 THEN PRINT "WE CANNOT CONTINUE WITHOUT THIS
DATA": GDTO 260

LINE INPUT "ENTER QUANTITY ORDERED:"; Q%

IF LEN(QS) = 0 THEN PRINT "PLEASE ENTER THE CORRECT VALUE" :

GOTO 280

(or some similar messages)

BUILDING DATA ENTRY AND CHECKING ERROR ROUTINES 67

Depending upon the program user’s sophistication, even more detailed error
messages for problems like the null string entry and others may be necessary. Our
examples have given minimum messages to keep the examples short, uncluttered, and
easy to understand, but they may not be adequate to ensure a proper response.
Return to this example:

170 LINE INPUT "ENTER CUSTOMER NUMBER:"; C$
180 IF LEN(CS$) = O THEN GOSUB 1010 : GOTO 170

1010 PRINT "YOU APPARENTLY PRESSED THE 'ENTER' KEY WITHOUT MAKING
AN ENTRY."

1020 PRINT "WE NEED A CUSTOMER NUMBER THAT LOOKS LIKE THIS: A-121."

1030 RETURN

Another example:

230 LINE INPUT "ENTER COMPANY NAME:"; C$
240 IF LEN(C3) > 12 THEN 'GOSUB 1010 : GOTO 230

1010 PRINT "YOU ENTERED: "; Cs%

1020 PRINT "PLEASE ABBREVIATE THE COMPANY NAME TO 12 CHARACTERS
OR LESS."

1030 PRINT "EXAMPLE: ALPHA PRODUCTS COMPANY COULD BE SHORTENED
TO 'ALPHA PRO cO'"
1040 RETURN

Subroutines need to be protected from the main program that calls or branches
to them. Depending on how a program is constructed, a subroutine could be encounter-
ed and executed as if it were part of the main program, especially if the subroutine
section is one of the program’s last modules. Use a STOP or END statement between
the main program and the module(s) containing the subroutines. This protects the
first subroutine in the subroutine module from being executed in normal line number
order. If the first subroutine is executed, the computer will stop executing the
program and give an error message when it encounters a RETURN statement for which
the program has no matching GOSUB statement that sent it to the subroutine.

(a) Write an error message subroutine, accessed by a GOSUB statement executed
after a true IF. . -THEN comparison, that displays an INPUT entry and describes
how to comply with the limit of twenty characters (because of data field length)
for entries to the following statement:

320 LINE INPUT "ENTER PRODUCT DESCRIPTION:"; Ps

Sample entry to above statement:

RUN
ENTER PRODUCT DESCRIPTION:LEFT HANDED MONKEY WRENCH

68 DATA FILE PROGRAMMING IN BASIC

(a) Your solution should be similar to this:

330 IF LEN(Ps) > 20 THEN GOSUB 1120 : GOTO 320

1110 STOP

1120 PRINT "YOU ENTERED "; P$; "FOR PRODUCT DESCRIPTION."

1130 PRINT "PLEASE REENTER, BUT SHORTEN YOUR ENTRY BY USING
ABBREVIATIONS"

1140 PRINT "SO THAT THE PRODUCT DESCRIPTION IS LESS THAN 20
CHARACTERS LONG,"

1150 PRINT "INCLUDING THE SPACES AND PUNCTUATION."

1160 RETURN

REPLACEMENT OF DATA ITEMS CONTAINED IN A DATA FIELD

The first example program at the beginning of this chapter illustrated the problem of
changing part of an existing string; attempting to change MIRIAM MARTINSON to
MIRIAM JONES by substituting the new last name for the old using MID§ as a
replacement function. The attempt to substitute JONES for MARTINSON resulted
in MIRIAM JONESNSON. The most practical solution is to always use data fields of
predefined lengths for each data item in a string. That way any changes or replace-
ments with MID$ will be complete, rather than partial, as happened above.

BUILDING DATA ENTRY AND CHECKING ERROR ROUTINES 69

Now design program modules to accomplish assignments and replacements of
fields within strings, using first and last names as examples.

Step 1. Define the field for the first name to have eight characters and that for the
last name, twelve characters, with a space separating the name fields.
Step 2. Create the data entry routine.

100 LINE INPUT "ENTER FIRST NAME:"; F$
110 IF LEN(FS$S) = 0 THEN PRINT "PLEASE, WE MUST HAVE THE NAME":GOTO 100
120 IF LEN(F$) > 8 THEN PRINT "FIRST NAME IS TOO LARGE. 8 CHAR. MAX.":

GOTO 100

130 IF LEN(F3$) < 8 THEN LET Fs = Fs + " ": GOTO 130

140 LINE INPUT "ENTER LAST NAME:"; Ls

150 IF LEN(LS$) = 0 THEN PRINT "PLEASE, WE MUST HAVE THE LAST NAME":
GOTO 140

160 IF LEN(LS) > 12 THEN PRINT "LAST NAME IS TOO LONG 12 CHAR. MAX.":
GOTO 140

170 IF LEN(LS$) < 12 THEN LET L$ = L3 + " ": GOTO 1790

180 LET N$ = F$ + " " + L3

190

200 :

Step 3. Replacement routine for last name field.

400 LINE INPUT "ENTER NEW LAST NAME:"; L1%
405 IF LEN(L1$) = 0 THEN PRINT "PLEASE, WE MUST HAVE A LAST
NAME": GOTO 400
410 IF LEN(L1$) > 12 THEN PRINT "LAST NAME TOO LONG. 12 CHAR.
MAX.": GOTO 400

420 IF LEN(L1$) < 12 THEN LET L1% = 1% + " ": GOTO 420
430
4640 LET MIDS$(N$,10,12) = L1%

Step 4. Name printing routines.

600 REM*** TO PRINT FIRST NAME ONLY
610 PRINT MID$(N$,1,8)

620 REM

630 REM*** T0O PRINT LAST NAME ONLY
640 PRINT MID$(N$,10,12)

650 REM*** TO PRINT COMPLETE NAME
660 PRINT N$

Check your understanding of the routines above by answering the following
questions.

(2) Inline 170, what is the purpose of L§ =L§ + “ ™?

70 DATA FILE PROGRAMMING IN BASIC

(b) What does line 180 do?

(c) Inline 440, what does the MID$ function do?

(@) IfF$§=“VAL” and L$ = “JEANS”, how will N§ appear when printed or dis-

played by line 6607

(2) Fills in unused character positions with blanks to the correct field length (same
technique used in lines 160 and 420).

(b) Packs first and last names into N§, separated by a space.

(c) Replaces twelve characters of N§ string beginning at character position 10 with
the string assigned to L18.

(d) VAL JEANS
(All “padding” spaces are included when N$ is printed.)

THE VAL FUNCTION IN DATA ENTRY CHECKS

If the product number and quantity ordered in a program must be numeric quantities,
VAIL() can easily convert these numbers stored as strings to numeric values.

330 A = "128,95"
340 PRINT VAL(AS)
350 A = VAL (AS)
360 PRINT A

RUN
128.95
128.95

BUILDING DATA ENTRY AND ERROR CHECKING ROUTINES 71

In the conversion, either a leading space is added for the implied plus sign, or a minus
sign is provided if the quantities were negative.

But the VAL() function does not completely solve the problem of converting
string numbers to numeric values. For example, alphabetic information included in a
string you wish to convert to a numeric value presents a very real problem that can
range from accidentally using the letter O (oh) for a zero, to a quantity that includes
the units that measure that quantity (12 quarts). Therefore, always test to be sure
that if numeric values are needed, that is what was entered.

Following are some sample values run on our TRS-80 computer. Try them on
your computer before you continue. (Hints for other computers are given below.)

5 REM*** vaAlL TEST #1
10 LET As = "aBc"

20 PRINT AS$, VAL{AS)
25 REM*** yal TEST #2 — NULL STRING
30 LET A$ = ""

40 PRINT A%, VAL(AS)
45 REM*** vAL TEST #3
50 LET A% = "123ABC"
60 PRINT AS$, VAL(AS$)
65 REM*** vAL TEST #4
70 LET A% = "aBc123"
80 PRINT AS$, VAL(AS)

The TRS-80 run:
RUN
ABC 0
123ABC 123
ABC123 0

If you get an error at line 20, start your next RUN at line 30 by typing RUN3¢
(a RUN starting at line 30). This is a useful debugging technique when part of a
program is giving you problems. If your BASIC doesn’t support this type of RUN
(line number), then eliminate lines 10 and 20 and do a regular RUN. Continue this
technique through the test program to see how your BASIC responds to these four
tests. The discussion below assumes that your VAL() function responds like the RUN
above. Alternate means to the same ends are discussed in the section on ASCII codes.
Notice in the RUN above that alphabetic characters result in a value of @, as do
a null string and the mixed alphanumeric data where the alpha information precedes
the numeric (ABC123). Notice also that the mixed data 123ABC results in a value of
123. The MICROSOFT BASIC’s VAL function disregards the alphabetic information
that follows numeric information in the same string. This is convenient if you wish
to enter the quantity and the units, such as 14 gallons, but inconvenient if you wish
to check for the validity of the data entered. Here, you want to ascertain that the
data entered are numeric, so when the VAL function is used you get valid numeric
values. At this point, for mixed numbers and letters, assume that the user did enter
the correct value.

72 DATA FILE PROGRAMMING IN BASIC

The test to validate numeric information would be:

IF VAL(AS$) = 0 THEN PRINT "ENTER NUMERIC VALUES ONLY"

Place this data test after the statement that tests for a null string, because on some
computers the VAL function encountering a null string results in an error condition
and program execution stops.

(a) Now do some programming. For the data entry problem on page 66, you
wrote a program to produce a data entry sequence with null string checks added.
Now add data checks that ensure that the product number and quantity ordered
are numeric values. Also include a data check to be certain that the product
number is a four-digit number.

BUILDING DATA ENTRY AND ERROR CHECKING ROUTINES 73

(a) 210 :

220
230

240
250

260
270

272
274

280
290

295

LINE INPUT

IF LEN(CS) =

GOTO 220

LINE INPUT

IF LEN(NS$) =

GOTO 240

LINE INPUT

IF LEN(Ps$) =
DATA": GOTO 260
IF VAL(P$) =

IF LEN(PS3)
DIGIT NUMBER":
LINE INPUT

IF LEN(QS3) =

GOTO 280

IF VAL (Qs$)

GOTO 2890

"ENTER CUSTOMER NUMBER:";

0 THEN PRINT "ENTRY ERR

0O THEN PRINT

<> 4 THEN PRINT
GOTO 260
"ENTER QUANTITY ORDERED:";
0O THEN PRINT

0 THEN PRINT "ENTER NUMBERS ONLY,

"ENTER CUSTOMER NAME:"; N
0 THEN PRINT

"ENTER PRODUCT NUMBER:";
0 THEN PRINT

USING STR$ TO CONVERT VALUES TO STRINGS

Cs
OR.

$

Ps

Qs
"PLEASE ENTER THE CORRECT VALUE":

PLEASE REENTER"

"PLEASE ENTER NUMBERS ONLY":
"PLEASE BE SURE TO ENTER A 4

PLEASE" :

"PLEASE RESPOND AS REQUESTED":

"WE CANNOT CONTINUE WITHOUT THIS

GDTO 260

The STR3() function serves the opposite purpose of the VAL() function. It converts
numeric values into strings. This allows you to manipulate numbers with string func-
tions. You can use it to convert numeric values to strings assigned to variables, in
concatenating several small strings into a string variable, as done earlier in this chapter.
For example, you may have combined product number, product description, and
quantity in inventory into one long string. You may then need the quantity in inven-
tory for an accounting procedure or another calculation. Such operations require a
numeric value. You would convert the string to a numeric value by using the VAL()
of the entry string. When the quantity is stored, you can convert back to a string by

taking the STRS$() of the numeric value to place it into the P$ string.

P$ 17633 BOOK TITLE 144
P$ = P$ + STR$(Q)
or
Q% = STRS(Q)
P$ = P$ + Q%

When the computer converts a numeric value to a string with STR$(), a leading

space is included if the numeric value is positive. A minus sign is included in the

string if the value is negative.

74 DATA FILE PROGRAMMING IN BASIC

Try this demonstration program:

140 LET X = 847.25
150 LET X% = STR$(X)
160 PRINT "X ="; x
170 PRINT "X8% ="; Xs$

Notice that the leading space is still there after the value has been converted to a
string.

In the example above, the LEN(X$) is seven — five numeric characters, the
decimal point, and the leading space in a positive value converted to a string. (Re-
member, blank spaces, decimal points, and other punctuation marks are characters.)
If you fail to provide enough string length or field space, you will inadvertently lose
significant digits or characters due to computer truncation. A six-digit number with
a leading space does not fit in a six-character field.

How many characters will the following data items have if they are converted
from values to strings with the STR$ function?

(a) 171.83
(b) 2001
(c) -999
(@ 7

® 5

(c) 4

CHECKING FOR ILLEGAL CHARACTERS

Using the ASC function in a data entry checking statement is a powerful tool to
determine whether illegal or unlikely characters have been included in an INPUT
string. Checking is done by a combination of the ASC function, the MID$ function,
an IF. . .THEN statement, and a FOR NEXT loop. First the length of the entry is
determined by the LEN function, which is used as the upper limit of the FOR control
variable, like this:

350 LINE INPUT "ENTER 6 CHARACTER CATALOG CODE:"; C$
360 FOR X = 1 TO LEN(CS)

BUILDING DATA ENTRY AND ERROR CHECKING ROUTINES 75

Then the MID$ function, using the FOR control variable (value of X for any iteration)
to determine which character to examine, selects each character in the string for
comparison to an ASCII number, like this:

370 IF ASC(MID$(C$,X,1)) = 32 THEN PRINT "REENTER BUT DO NOT USE
SPACES": GOTO 350
380 NEXT X

{Note: Here is one of those exceptions when you “leave” a FOR NEXT loop.)

Notice that any character that can be entered as part of a string can be checked to see
that legal characters that should be there are there, or that illegal characters are not
included. Notice, too, that the error message could be located in a subroutine outside
of the FOR NEXT loop. In addition, you can use the logical AND and OR, to check
for more than one character or group of characters in the same IF. . THEN statement.

What if a user made the following response to line 350 in the example above?
Answer the questions based on this response and this program segment:

RUN
ENTER 6 CHARACTER CATALOG CODE:A -~ 1314

(a) What is the length of the substring selected by the MID$ function in line 370?

(b) What ASCII value is compared to 32 the first time through the FOR NEXT

loop?

(¢) The second time through?
(d) On which iteration (time through) of the FOR NEXT loop is the comparison in
line 370 true?

(e) What value does the FOR statement control variable have as an upper limit for

this user’s response?

(a) 1

(b) 64 (for A)

(c) 32 (for a space)
(d) second iteration
(¢) LEN(C3) =38

76 DATA FILE PROGRAMMING IN BASIC

(a) Write a data entry checking routine similar to the one before that prints an
error message if an illegal character is encountered. Use more than one IF. . .
THEN statement with the ASC function in the comparison, or a single IF. . .
THEN statement that uses the logical AND and OR. The only legal characters
for the entry are the digits @ (zero) through 9 inclusive and the decimal point,
such as would be entered for a dollar and cents entry without a dollar sign.

(a) 100 LINE INPUT "ENTER A VALUE:"; Vs
110 FOR X = 1 TO LEN(VS)
120 IF ASC(MIDS$(V$,X,1)) > = 48 AND ASC(MID$(VS$,x,1)) < = 57 OR

ASC(MIDS(VS,X,1)) = 46 THEN 140
130 PRINT "INVALID ENTRY. ENTER NUMBERS AND DECIMAL PT,., ONLY":
GOTO 100

140 NEXT X
150 :

A DISCUSSION OF DATA ENTRY AND CHECKING PROCEDURES

This chapter has included recommendations, hints, and techniques for dealing with
and checking data. This section describes and summarizes procedures used to check
and validate all data entries.

There are two schools of thought regarding at what point incoming data should
be checked for errors. One states that since the data entry operator’s time is costly,
the operator should merely enter data using the fastest possible procedures, with no
checks for accuracy at the time data are entered. This position requires that more
time be spent training the data-entry operator in fast, accurate computer entry
techniques. Then, later, another program does the error checking on the data at fast
computer speeds. Whenever a data error is encountered, the computer “kicks out”
or rejects the entire data entry transaction for that set of data and prints the rejected

BUILDING DATA ENTRY AND ERROR CHECKING ROUTINES 77

information in a special report. The rejected data set is then reprocessed or reentered
by the data-entry staff. This procedure works well if the number of rejects is low.

In contrast, we prefer the second approach — checking data on the way in. As
each item is entered, it is error-checked immediately. If an error is detected, the
computer operator is advised to reenter the data. One advantage is that the person
making the entry error is responsible for correcting it. This method also gives manage-
ment a better measure of an operator’s work flow since only accurate, accepted infor-
mation is completed during a work day. In the alternate method, data entry rates may
seem high, but so may be the reject rate, and special procedures are needed to verify
who is making the entry errors. A less subtle technique is to signal an entry error
with a terminal beeper or bell. Each time faulty data are detected, the sound signals
the operator (and the manager, if present) that an error was made and draws attention
to the “culprit.” But these are concerns in a business environment. The immediate
error check is more in keeping with the small business or personal nature of most
programming applications presented here. And since all the error checking routines
follow the data entry immediately, you can easily read the program to see what kinds
of error checks are being made.

Two general data entry techniques are universally accepted. Omne uses a graphic
reproduction on the video screen of the paper form from which data are entered. It
makes sense to reproduce that form on the screen and have the computer prompt the
operator to “fill in the blanks” just as they appear on the paper form or data source
sheet. Of course, this technique assumes you are using a video terminal as a data
input device and that your BASIC has graphic programming capabilities. Since graphic
instructions vary so widely from one version of BASIC to the next, we do not show
you a program to reproduce a data entry form.

A second generally accepted technique is one that repeats back to the operator
one or more sets of data entered. The operator is then given the chance to reenter
any incorrect items, even after the entry checking has been performed by the computer.
This is the “last chance™ to pick up spelling errors, number transpositions, typographi-
cal errors, and anything else for which entry error checks cannot be designed into the
program itself. An example of such a post-data entry display appears below:

THANK YDOU. HERE IS THE DATA YOU ENTERED.

CUST, # PROD. # QUANTITY
1 - 98213 17892 18
2 — 98213 24618 12
3 - 98213 81811 144

ARE THERE ANY CHANGES (YES OR NQO)? YES
ENTER THE NUMBER OF THE LINE IN WHICH A CHANGE IS NECESSARY:

Before a summary report such as the above is displayed, clear the screen of
previously displayed information. If fact, clearing the screen before each new entry
or after the entry of a data set is important in the entire concept of avoiding errors.
If the graphic display of a data source form is used, then the screen should be cleared
and the form redisplayed with the just-entered data. The operator can then double
check with the option to make any corrections directly on the new form.

78 DATA FILE PROGRAMMING IN BASIC

Many error-checking procedures depend on personal preference or company
policy. Either way, plan ahead. Look carefully at the complete problem or job for
which you are using your computer. In what form and format should the data be
entered? Are there subtle limits or tests that you can apply to data to detect operator
errors? For instance, if you are entering addresses with zip codes and a large percentage
of your business is in California, then you know that most zip codes should start
with the number 9. It would be appropriate to test whether the entered zip code
value begins with a 9, and if not, to inform the operator of a possible error.

140 LINE INPUT "ENTER ZIP CODE:"; Zs

150 IF LEN(Z$) <> S THEN PRINT "ZIP CODE MUST BE 5 CHARACTERS.
PLEASE REENTER": GOTO 140

160 IF LEFTS$(Z$,1) = "9 THEN 200

170 PRINT "THE ZIP CODE YOU ENTERED, "; z$; " IS NOT FOR
CALIFORNIA"

180 LINE INPUT "IS IT CORRECT ANYWAY?"; RS

190 IF LEFT$(RS$,1) <> "Y" THEN PRINT "PLEASE REENTER": GOTO 140

200 REM PROGRAM CONTINUES

We also strongly recommend consistency in your data entry formats, especially
for such things as data field lengths. Don’t confuse yourself or others who use your
programs. If you write several programs that use personal names, use the same size
delimiters or data fields. This also allows you to have compatible data files for
various uses. The same goes for address sizes and formats, product descriptions, and
other alphanumeric data. Remember, your company may have already made the
decision for you, so be sure you know the policies!

For numeric values, quantities, and entries involving monetary values, you may
have to dig a little to discover the limits for which the data should be tested. Company
policy, common sense, and actual experience may give you the logical limits for a
“not less than” or “not to exceed” data entry check. And you can always use the
operator override procedure for possibly erroneous data, as shown below:

330 LINE INPUT "ENTER QUANTITY ORDERED:"; Q$

340 IF VAL(Q$) <= 96 THEN 400

350 PRINT "THE QUANTITY ENTERED EXCEEDS NORMAL LIMITS OF 96 UNITS,
PLEASE REENTER": GOTO 330

360 :

370

399 REM ANOTHER PROCEDURE

400 LINE INPUT "ENTER PRICE QUOTED:"; P$

410 IF VAL(P$) < 75.00 THEN 450

420 PRINT "THE PRICE YOU QUOTED EXCEEDS NORMAL LIMITS OF $75,00"

430 LINE INPUT "IS IT CORRECT, ANYWAY?"; RS

440 IF LEFT$3(R$,1) <> "Y" THEN PRINT "PLEASE REENTER": GOTC 400

450

Let’s review the general data entry error-checking procedures for alphabetic and
numeric information.
1. Enter all data into string variables after a clearly stated prompt request from the
computer.
2. Enter only one data item per prompt.

BUILDING DATA ENTRY AND ERROR CHECKING ROUTINES 79

3. If you are going to pack a number of data items (a data set) into one string, enter
the data into separate string variables and then concatenate after all checking has
been accomplished. Do not enter data directly into a substring position.

4. Checking should include a test for nonresponse (a null string) of the type IF
LEN(RS) = 0. ..

5. When an error is discovered, include a message not only to tell the operator that an
error was made, but also to describe as completely as possible what the error was.
Do not merely request a reentry.

6. Check alphabetic data for field length using the LEN function.

7. It may be necessary to pad the entry with spaces to the proper field length,
especially for alphabetic data.

8. Thoroughly test numeric data (which we recommend be entered into a string
variable) in this order:

(a) for non-response (a null string)

(b) for excess string length, if applicable

(c) for the inadvertent inclusion of alphabetic characters in numeric values, using
VAL or ASC

(d) for any company policy tests or size limit

(e) if the datum is an integer value, use the integer declaration (a percent sign
following a variable in many BASICs) or test the value to see if it is an integer
with a statement like IF X <> INT(X). . .

(f) test for negative values if they are not acceptable. If this sounds like a lot of
work, remember that your otherwise excellent program must have valid and
accurate data to do its job. Don’t skimp. Be complete. For example, the
capability of the IF. . .THEN statement to PRINT a message may lull you
into trying to oversimplify an error message in order to fit it into the same
programming line as the IF. . .THEN statement. Don’t fall into this trap.
Use GOSUBs and provide complete, clear messages to the operator.

You may want to place all error tests and messages in subroutines. This gives
your program neatness and clarity. Various entries may be put to the same tests,
allowing the check statements to work for various entries if variables and other factors
are compatable.

Be alert to other occasions throughout your programs where data errors may
occur. While we encourage sensitivity to errors at data entry time, always check for
data errors later in your program, especially if the data are subject to various mani-
pulations after the entry routines. Watch for strange results from functions such as
VAL. Get to know the version of BASIC you are using inside and out by thoroughly
exploring the reactions of statements and functions in various circumstances. The
error conditions you encounter will depend largely on your programming skills and
the kinds of applications you program. Be alert to the errors that occur and include
tests for them. Don’t get psychologically locked in to your first, second, or third
version of a program or programming technique.

Finally, be aware that many programmers test their programs with only sensible
data, neglecting the ridiculous mistakes that can, and without a doubt will, be made.
When you think you have covered every possibility, let a child with no computer
experience try it out. If the program survives, you've checked it all out!

80 DATA FILE PROGRAMMING IN BASIC

CHAPTER 3 SELF-TEST

1. Write an IF. . .THEN comparison that will be true if:

(a)
(b)
()
(d)
(e

the entry has exactly seven characters.

the entry does not have exactly seven characters.

the first character in an entry is not a number.

the first character in an entry is a number other than zero.
the entry is not a null string.

2. Write a statement line that checks to see if an entry has less than twelve char-
acters, and if so, pads the entry with spaces so that the resulting string has
exactly twelve characters.

Write a data entry checking routine that checks to see that no numbers have been

included in a string entry. Write an accompanying subroutine to be called when
a number is found that tells the user what was entered, and to reenter without
including numbers in the entry.

BUILDING DATA ENTRY AND ERROR CHECKING ROUTINES 81

You now have the background to write a data entry module for most kinds of
data to be later placed into a data file (covered in the next chapter). Write the
data entry module and complete it with data entry error checks, as described
below:

(2)

(®)

(©)

Write a data entry routine that prompts the use to enter:

(1) a five-character alphanumeric product code (must always have five
characters)

(2) a product name with a twelve character maximum length

(3) the quantity ordered into a three-digit field with a limit of 288 per
order

(4) the price, into a five-digit field, with no price exceeding $99.99

Pack the information entered into one long string (M$) with the following

fields:

Note: do not include slashes in the data field string.

Print parts of M$ in a “report” with the format shown below:

PRICE QUANTITY PROD. CODE

Refer back through this chapter for ideas, and try debugging your solution

program before looking at our way of doing it. Our solutions are not the only

ones possible. The real test is whether the program works, and how fool proof
it is.

82 DATA FILE PROGRAMMING IN BASIC

Answer Key

1. (a) IF LEN(AS) = 7 THEN...
(b) IF LEN(AS) <> 7 THEN...
() IF ASC(AS) < 48 AND ASC(A3) > 57 THEN...
(d) 1F vaL(AS) <> 0 THEN...

(€) IF LEN(AS) <> 0 THEN...

2. 120 IF LEN(A%) < 12 THEN LET As = As + " ": GOTO 120

(Your string variable and line number may be different, of course.)

3. 310 LINE INPUT "ENTER YOUR NAME:"; AS
320 FOR X = 1 TO LEN(AS$)
330 IF ASC(MIDS$(AS,X,1)) > 47 AND ASC(MIDS(A$,X,1))
GOSUB 1100 : GOTO 310
340 NEXT X

1100 PRINT "YOUu ENTERED: "; AS

1120 PRINT "PLEASE REENTER, BUT DO NOT INCLUDE ANY NUMBERS, "

1130 RETURN

BUILDING DATA ENTRY AND ERROR CHECKING ROUTINES 83

110
115
119
120
130
140

150
160

170
180
200
210
190

220

230
240

250
260

270

280
290
300
310
320
330
340
350
360

REM SOLUTION FOR #3, PROBLEM 4, SELF-TEST

CLEAR 1000

LINE INPUT "ENTER PRODUCT CODE(S5):"; C$

IF LEN(CS$) <> 5 THEN PRINT "CODE MUST BE 5 CHARACTERS.
REENTER": GOTO 130

LINE INPUT "ENTER PRODUCT NAME(12):"; N$

IF LEN(N$) > 12 THEN PRINT "ENTRY TOO LONG. PLEASE REDUCE TO
12 CHAR.": GOTO 150

IF LEN(NS) < 12 THEN LET N$& = Ns + " ": GOTO 170

LINE INPUT "ENTER QUANTITY ORDERED:"; Q%

IF LEN(QS$) > 3 THEN PRINT "TOO MANY DIGITS. 3 MAXx.": GOTO1890

IF LEN(QS$) < 3 THEN LET Q% = Qs + " : GOTO 210

IF VAL(Q$) 0 THEN PRINT "ENTRY ERROR. NUMBERS ONLY":
GOTO 180
IF VAL(QS$) > 288 THEN PRINT "T0OO MANY UNITS ORDERED.

REENTER": GOTO 180

LINE INPUT "ENTER UNIT PRICE:"; Ps

IF LEN(PS$) > 5 THEN PRINT "PRICING ERROR., 5 DIGIT MAX.":
GOTO 230

IF LEN(PS$) < & THEN LET Ps = Ps + " " : GOTO 250

IF VAL(PS$) = 0 THEN PRINT "PRICING ERROR., NUMBERS ONLY":
GOTO 230

IF VAL(P$) > 99.99 THEN PRINT "PRICING ERROR. 99,99 MAX.":

GOTO 230

LET M3 = C$ + N$ + Q% + P3%

cLs
PRINT "PRICE", "QUANTITY", "PROD. CODE"
PRINT RIGHTS$(MS$,3),

PRINT MID$(M$,18,3),
PRINT LEFT$(M$,5) : REM 330,340,350 COULD BE ON ONE LINE

CHAPTER FOUR

Creating and Reading Back
Sequential Data Files

Objectives: When you complete this chapter, you will be able to store and retrieve
numeric and/or alphanumeric data in sequential disk data files, using the following
BASIC data file statements in their special formats: OPEN, CLOSE, INPUT, PRINT,
KILL.

INTRODUCTION

A data file is stored alphanumeric information that is separate and distinct from any
particular BASIC program. It is located (recorded) on either a magnetic disk, diskette,
or cassette tape. This chapter discusses using sequential (also called serial) data files on
disks and diskettes. Such files are very similar to cassette tape files, and the working
concepts are the same. Therefore, even if your computer system uses a cassette re-
corder to store information, read these next two chapters to learn about sequential
files, as well as Chapter 6, which deals specifically with cassette tape files.

In your previous BASIC programming experiences you probably hand-entered
all data needed by your programs using INPUT statements. You did this each time
you ran your programs. Or, if you had larger amounts of data, you might have entered
the data with DATA statements and used the READ statement to access and mani-
pulate the data. In either case, the data were program-dependent; that is, they were
part of that one program and not usable by other programs.

A data file is program-independent. 1t is separate from any one program and
can be accessed and used by many different programs. In most cases, you will use
only one program to load a data file with information. But once your data file is
loaded (entered and recorded) on disk or cassette tape, you can read the information
from that file using many different programs, each performing a different activity
with that file’s data.

For example, perhaps you have computerized your personal telephone and
address directory using data files stored on a disk. You may need just one program
to originally load information into that file and add names to it. (This chapter will
show you how.) Another program allows you to select phone numbers from the file

84

CREATING AND READING BACK SEQUENTIAL DATA FILES 85

using NAME as the selection criterion. You can use still another program to change
addresses or phone numbers for entries previously made in the file. Another program
could print gummed mailing labels in zip code order using the same data file. You
could design yet another program to print names and phone numbers by phone num-
ber area code. The possibilities go on and on. Notice that one data file can be
accessed by many different computer programs.. The data file is located separately on
the disk in a defined place. Each program mentioned above copies the information
from the disk into the electronic memory of the computer as it is needed by that
particular program. Alternatively, the program could transfer information from the
computer’s memory to be recorded onto the disk.

If you already use your disk to SAVE and/or LOAD BASIC programs, then you
have some experience with disk files. When you SAVE a BASIC program, it is re-
corded on this disk in a file. Such files containing BASIC programs are called program
files. In contrast, the files discussed in this chapter contain data and are therefore
called data files. The two types of files are different and are used differently. A
BASIC program file contains a copy of a BASIC program that you can LOAD, RUN,
LIST, and SAVE. A data file contains information only. You access this information
using a BASIC program that includes special BASIC statements that access data files;
that is, transfer all or part of the data from the magnetic recording on disk or
cassette into the computer’s electronic memory so the program can use it. You cannot
LOAD, RUN, LIST, or SAVE a data file. You can access the information only by
using a BASIC program.

(a) Describe in general terms how you can access data in a data file.

(2) Using a BASIC program that includes special file accessing BASIC statements.

DATA STORAGE ON DISKS

A magnetic disk has limited data storage capacity that varies from one computer to
another, from one size disk to another, and from one recording system to another.
For our TRS-80, the file capacity of the first disk drive is approximately 55,000
bytes of information, while the capacity of the second and any additional disk drive
units is 83,000 bytes of information. The term “byte” will be explained shortly.

A ““disk” refers to several styles of magnetic storage. Floppy disks are made of
a flexible, magnetic-coated plastic, and come in two sizes — 8 inch and 5% inch. The
smaller is often called a diskette, Hard disks are also available for microcomputers.

86 DATA FILE PROGRAMMING IN BASIC

Although more expensive, they have larger data storage capacities. Fortunately, these
physical variations do not affect the BASIC statements used to store and access data
files.

Other variations occur in the way data are recorded on disks. A disk can be
recorded on one or both sides and in more or less space, depending on the disk drive
system. A double-density system records twice as much data in the same space as a
single-density system. A quad-density system is double-density recording on a system
that can record both sides of a disk without “turning it over.”” Again, such variations
do not affect the BASIC statements used to store and access data files.

A closer look at a single-density 5%-inch diskette provides an example. As you
see in Figure 4-1, the disk is divided into thirty-five concentric circles called tracks.
Each track, in turn, is divided into ten sectors, each of which can accept one record
of recorded data. Each record has the capacity to store 256 bytes of information.
This TRS-80 Model 1-style disk in a single disk drive system has approximately 215
records available to store data. Other disk drive systems may have different patterns of
tracks or number of sectors per track.

TRACK ¥ SECTOR 8@
DATA 256 BYTES SECTOR NUMBERS

TRACK/SECTOR ID FOR
TRACK 1 SECTOR B

35

DIRECTION OF ROTATION

Figure 4-1. A single-density 5% inch diskette. Copyright 1979, Tandy Corporation.
Reproduced by permission.

CREATING AND READING BACK SEQUENTIAL DATA FILES 87

What is this thing called a byte? A byte is computer jargon for both a unit of
computer memory and a unit of disk storage. Each byte has an electronic pattern
that corresponds to one alphanumeric character of information. One letter of the
alphabet, one special character, or one numeric character entered as a string (such as
LET B} = “3”) takes up one byte of storage space. A twenty-character name takes
twenty bytes of disk storage space. The general rule for storing strings in data files is
that the amount of storage needed for each string is equal to the actual length of the
string (plus one or two bytes for “overhead,” depending on which computer and disk
system you use).

(2) How many bytes of disk storage are required by the string assigned to N$?

N$ = "BASIC DATA FILES ARE FUN"

(a) Twenty-four, plus two for “overhead.” (Spaces also take one byte.)

Keeping track of disk storage space requirements for alphanumeric data in
strings is easy, since one character equals one byte. The storage requirements for
numeric values not entered as strings are much more difficult to count and vary from
one version of BASIC to another. Even within one version of BASIC the number of
bytes to hold a numeric value differs, depending on the value’s precision. Precision
refers to the actual number of digits in the value that the computer keeps track of.
For our TRS-80 computer, numeric values use storage space as follows:t

Integer numbers (%) = 2 bytes (whole numbers in the range of *+ 32768)

Single precision numbers (1) = 4 bytes (up to six significant digits, i.e., 123456,
354798)

Double precision numbers (#) = 8 bytes (up to sixteen significant digits)

88 DATA FILE PROGRAMMING IN BASIC

For a personal telephone and address directory application, let’s see how much
disk storage space is required for each person on file. Each data item has a defined
field length.

Name 20 characters
Address (street) 25
City 10
State 2
Zip code 5
Phone (XXX-XXX-XXXX) 12
Age 2 (Entered as an integer number)
Birthdate (xx/xx/xx) 8
Subtotal 84
Overhead 7
Total 91

Note that string character values are used for the zip code. Filing the zip code
as an integer number instead of a five-character string would have saved disk storage
space.

(a) How many bytes would be required to store the zip code as an integer value

instead of a string?

(b) Why was a twelve-character string rather than a numeric value used for the phone

number?

(¢) How many records would 150 entries in the address and phone directory take

up in storage?

(d) What is the maximum number of people you could file in your directory on one

disk with a capacity of 55,000 bytes?

(a) Two, plus “overhead.”

CREATING AND READING BACK SEQUENTIAL DATA FILES 89

(b) Could not have included hyphens, which make number easier to read.

(Note that if the telephone number had been entered without hyphens as a
numeric value, the precision would have had to be at least ten in order not to
lose significant digits from the number.)

(c) 91 times 150 = 13650 bytes. 13650 divided by 256 = 53.32, or 54 records.
(Note that if you placed all eight data items into one long string, you could
save six bytes of overhead, leaving eighty-five bytes per entry for a total of fifty
records. This technique can save bytes per entry and, therefore, valuable storage
space.)

(d) 55000 divided by 91 = 604.

The eight items in each entry in the personal directory are called a dataset. A dataset
consists of all data that are included in one complete transaction or entry into a data
file. Grouping information by dataset and then accessing or otherwise manipulating
the dataset as a group of data items makes programming and reading programs much
easier.

Sequential data files can be visualized as one long, continuous stream of informa-
tion, with datasets recorded one after the other. Imagine datasets recorded con-
tinuously on a magnetic tape cassette (a single, long ribbon of tape) and you have a
fairly accurate image of how a sequential file looks in theory. That is how you as a
file user should think of it. The truth is, a file can be partially located on one track
or one sector, and partially on another, depending on the computer system and how
the file was filled. Fortunately, the physical location of the file on a disk is “invisible”
to the user. All you need remember is the long, continuous stream of information.

SEQUENTIAL VS RANDOM ACCESS DATA FILES

Data filing systems can use sequential data files or random access data files. The

latter are explained fully in Chapters 7 and 8. Sequential data files use disk storage
space more efficiently than random access data files. It will quickly become clear to
you that a disk is very easy to fill to capacity, despite the seemingly large number of
bytes that can be stored on it. Thus, sequential files are space-efficient. However,

it is somewhat difficult to change data stored in a sequential file. Sequential files are
designed for “permanent” information that changes infrequently. You can change data
in sequential files, but it is not as easy or efficient as in random access files. Thus,
another criterion for choosing between sequential and random access data files is how
often changes in data can be expected.

A third consideration is the time it takes to access information stored on a disk.
When you have a large data file with loads of information, it takes more computer time to
find or access a particular dataset at the end of a sequential file than it would in a random
access file. To access the 450th data set in a sequential file of 475 data sets, the computer
must sequentially search through 449 datasets before coming upon the 450th dataset.
Using random access files, the computer can immediately access the 450th dataset without
having to search through the other 449 datasets. Therefore access time is another factor in
selection of sequential or random access data files.

90 DATA FILE PROGRAMMING IN BASIC

(a) What are three factors to consider when choosing to use sequential or random

access data files?

(a) Storage space efticiency, changing data, and time for accessing data.

INITIALIZING SEQUENTIAL DATA FILES

To use a data file, you must first OPEN the file on your disk. This is done as part
of the program’s initialization module. The procedure varies from one version of
BASIC to another. MICROSOFT BASIC-80 and TRS-80 BASIC are used in our
examples.

When you load the disk operating system (DOS) from your disk, TRS-80 asks
you, “HOW MANY FILES?” Your response determines how many files you can use
at once (a non-response allows three at once). In MICROSOFT BASIC 80 and
TRS-80 BASIC, a record is automatically added to the file as needed for incoming data.
Therefore, users need not concern themselves with file size, as you might have on
another computer, except to use disk space efficiently and to avoid having a large
collection of disks.

The OPEN statement tells the computer which file (or files) your program will
use. It also provides the computer with other information. The OPEN statement
creates a new file if none exists for the file name specified. It also sets the access mode
for using the file, as input (“I”), output (“0”), or random access (“R”). For
sequential files, use the “I”” mode for files from which information will be read into
the computer’s electronic memory, and “O” mode for files that will take information
“out” of the computer and store into the data file. The OPEN file will either be
input or output. It cannot be both at the same time.

OPEN also assigns a buffer to the file referred to in the OPEN statement. A
buffer is a 256 byte section of the computer’s memory that is created to act as a
go-between for the computer and the disk data file (see Figure 4-2). Input informa-
tion accessed from a disk file is first copied into a buffer, 256 bytes at a time. It is
then available for manipulation by the program. Likewise, data to be output from
the computer for recording onto the disk are first accumulated in the buffer. When
the buffer is full, the information is copied onto the disk. The buffer is a holding
area for all data coming to or from a data file. The OPEN statement assigns a buffer
and buffer number to each file to be used by your program. A buffer is needed for
each file that is OPEN at the same time in the program. TRS-80 BASIC and BASIC-
80 provide buffer numbers from one to fifteen. You can choose any numbers in that
range. Allocate the number of buffers when you respond to the initializing question
“HOW MANY FILES?”

CREATING AND READING BACK SEQUENTIAL DATA FILES 91

diskette
o
#2 \
Memory
#1
— - —
Buffers

#2 is Input (“I"") Buffer
#1 is Output (“O”) Buffer

Figure 4-2. Data flow through buffers.

Let’s now examine various OPEN statements and then practice writing OPEN
statements that include all the information needed by the computer to deal with data
files in a program.

The OPEN statement has the following form:
140 OPEN "I", 1, "NAMES1"

This statement opens the file with the name NAMES! as a sequential input (“I”) file
assigned to buffer number 1. If the file with the name NAMES1 does not exist on
the disk, an error message will indicate that the file cannot be found. (It is an error
condition, since you cannot input or read data into the computer from a nonexistent
file.) Remember, input and output, in the context of a data file OPEN statement,
refer to input from the disk to the computer, and output from the computer onto
the disk. If you think of the disk as a peripheral device, like a computer terminal,
this way of using “input™ and “output” makes sense, like input from the keyboard
and output to the CRT.

Another example:

140 LINE INPUT "ENTER FILE NAME:"; Fs
150 OPEN "1", 4, F3

This shows that the file name can be assigned with a string variable. Line 150 opens
the file designated by the user in F$, as an input (“I”) sequential file assigned to
buffer number 4.

92 DATA FILE PROGRAMMING IN BASIC

One important point about using the OPEN statement to open an output (“0”)
file is illustrated by the following statement:

180 OPEN "O", 2, "TEMPFIL"

This statement opens the file TEMPFIL as a sequential output file assigned to buffer
number 2. If no file by that name exists on the disk, it will be created. But here is
the tricky part: If TEMPFIL already exists, all of that file’s previous contents will
be lost! Be sure you understand that. If you attempt to reopen an existing file in
output mode, you destroy all data previously recorded in the file — a lesson you do
not want to learn the hard way!

You can even allow the user to enter all of the information needed for the
OPEN statement, as in this example:

140 LINE INPUT "ENTER FILE MODE:"; M3
150 INPUT "ENTER BUFFER NUMBER"; B%
160 LINE INPUT "ENTER FILE NAME:"; Ns$

170 OPEN M$, B%, N$

In a “real” program, you would undoubtedly include error checking statements for
all user inputs. The percent sign in B% indicates that only an integer will be assigned
to the numeric variable B% (no fractional value).

Check your understanding by writing three statements or program segments
according to the following specifications. '

(a) Open an input file named PHONES, assigned to buffer 6.

(b) Open an output file with a user-designated name, assigned to buffer 2.

(c) Open an input file with a user-designated name and buffer number.

CREATING AND READING BACK SEQUENTIAL DATA FILES 93

(@) 110 OPEN "1",6, "PHONES"

(b) 140 LINE INPUT "ENTER FILE NAME:"; NS
150 OPEN "o0", 2, Ns

{c) 210 LINE INPUT "ENTER FILE NAME"; NS
220 INPUT "ENTER BUFFER NUMBER"; BX%
230 OPEN "I1", B%, NS

Every file that is opened with an OPEN statement must also be closed with a
CLOSE statement before the program finishes executing. As soon as the program is
through using a file, and always before the program terminates, include a CLOSE
statement to unassign the buffer from that file. This also completes any transaction
inside the computer system that the buffer was involved in, as explained in more
detail in the next section. Once a file has been closed and the buffer unassigned, the
same buffer number can be reused for any other file you open. Here are some sample
CLOSE statements:

800 CLOSE 1 unassigns buffer number 1

820 CLOSE 1, 4, 3 unassigns the three buffers indicated

860 CLOSE unassigns any and all open buffers from their files
The Buffer Problem

CLOSE is a vitally important statement and, in most cases, is used to maintain the
integrity and accuracy of your data files. Recall that the buffer acts as a go-between
for the computer and the disk system. When you output data from the computer to
the disk file, the data go fist to the buffer. Then, when the buffer is full (256 bytes),
the data are output and recorded onto the disk. This is often referred to as updating
the disk file.

What happens if the buffer is only partly full of data and there is no more data
to finish filling it? You might expect the half-full buffer to simply transfer its contents
to the disk for recording when the program finishes execution. But it won’t do that.
The data in the half-filled buffer will not necessarily be recorded into the file. Your
file may not contain all the information you expected. One important purpose of the
CLOSE statement is to force the buffer to transfer its contents to the data file even
though the buffer is not full. As a rule of thumb, any program with an OPEN state-
ment should have a CLOSE statement that is always executed before the program
terminates. If you get trapped with a program that aborts or terminates and the
buffer still contains some data, CLOSE can be executed in direct mode, forcing the
buffer to transfer its contents to the disk file. However, to have to do so indicates
poor programming technique and would be completely unacceptable in a work
environment. Further instructions on writing your programs to include a CLOSE
statement that is always executed are given later in the chapter.

94 DATA FILE PROGRAMMING IN BASIC

(a) What are two purposes of the CLOSE statement?

(a) To unassign the buffer and to force the buffer to transfer its contents to the disk
data file.

Our TRS-80 reference manual states that the buffer will automatically “flush”
(transfer its contents to the disk data file) under normal conditions if the program
terminates at an END or STOP statement, because of a disk error, or when the user
types RUN, NEW, or CLEAR, and even when a program line is added or deleted.
Check your reference manual to see what happens with your computer but don’t
count on what is said! To repeat: Always include a CLOSE statement that is executed
before the program terminates, so that buffer-flushing is automatic. You should only
force buffer-flushing under emergency conditions, and then you should use the CLOSE
statement in direct mode.

The buffer-flushing problem — and it is a real problem — makes it imperative that
you never remove a disk from the disk drive if the disk contairis an open file. Be
certain all files are closed before you remove the disk from the drive, or you may find
yourself with data from a half-filled buffer placed in the wrong file on the wrong disk,
which can create some nasty errors. Be cautious, and remember that data go first to
the buffer. They then transfer to the disk file once the buffer is full. If the buffer
is not full, force it to transfer the data to the disk file with the CLOSE statement.

(a) If you are outputting data in a program to a data file and the program accidental-
ly terminates without executing a CLOSE statement, what should you do?

(a) Close the file with a CLOSE statement in direct mode.

CREATING AND READING BACK SEQUENTIAL DATA FILES 95

PRINTING OR WRITING DATA INTO A SEQUENTIAL
DATA FILE

You have learned to set up communication between the computer and the disk sys-
tem with the OPEN statement and CLOSE statement. Now you will learn how to
place data into a file; that is, actually record onto the disk. TRS-80 BASIC does this
with a special form of the PRINT statement, distinguished from a regular print state-
ment by using a # sign followed by the buffer number of the file into which the data
is to be recorded. BASIC-80 uses WRITE # as well as PRINT #.

240 PRINT #1, A, B, C

This statement tells the computer to print or write into buffer #1 (and then, of course,
into the file assigned to buffer #1) the values assigned to numeric variables A, B, and
C.

270 LET X = 3 or
280 PRINT #X, A, B, C 280 WRITE #¥X, A, B, C

The buffer number can be a variable, but be sure the variable has an assigned value
before the PRINT # or WRITE # statement is executed!

Look at the next example carefully. The program prints or writes data into a
file starting at the very beginning of the file. Remember, when you OPEN a file for
output, any previous data in that file is destroyed.

100 REM FILE PRINT DEMO #1

110
120 OPEN "0",1, "DEMO1"

130

200 REM READ DATA AND PRINT TO FILE

210

220 READ A, B, C

230 IF A = —1 THEN 990: REM CHECK FOR END OF DATA FLAG

240 PRINT #1,A;B;C
250 GOTO 220

260

900 REM DATA FOR DEMO

910 DATA 23, 26, 18, 19, 22, 20
920

930 REM END OF DATA FLAG

940 DATA =1, =1, -1

950

980 REM CLOSE FILE

990 CLOSE 1

999 END

The resulting sequential data file has recorded information that looks like this:

23 26 18
19 22 20

96 DATA FILE PROGRAMMING IN BASIC

Commas and semicolons have a different effect on the data in the file. You could
change line 240 as follows:

240 PRINT #1, A, B, C

using commas between the variables instead of semicolons. The resulting file includes
many more spaces between the values. Therefore more disk space is used and actually
wasted. It would look like this:

23 26 18
19 20 22

The file “image” is similar to the image you would get on a CRT display screen had
you executed a regular PRINT statement. To save disk space, use semicolons between
variables in the PRINT list. But notice that you must use a comma after the buffer
number, before the variable list. (See line 240 above.)

(a) Write a statement that prints variables J, K, and L to buffer number 3.

(a) 160 PRINT #3, J; K; L
160 WRITE #3, J, K, L (BASIC-80 only)

How you print data into a file becomes very important when you try to read
(input) the data already in the file back into the computer. The print “image” for
numeric data has already been described. Use semicolons between variables in your
PRINT # statements, and you will save file space and have no trouble reading numeric
data from the file. The following discussion applies only to potential problems with
string data being printed into a data file.

Printing alphanumeric data into a file can cause the TRS-80 BASIC user some
problems, depending on the type of data being written into the file. If you use a
separate PRINT # statement for each string assigned to a string variable that you wish
to place into the file, you should have no trouble later reading the data back from the
file. In the file a carriage return will be placed after each string variable, separating
one string from another. Consider the following example:

220 LINE INPUT "ENTER YOUR NAME:"; N$
230 PRINT #1, N$
240 LINE INPUT "ENTER YOUR PHONE NUMBER:"; P$

250 PRINT #1, P$%
260 INPUT "ENTER YOUR AGE"; A
270 PRINT #1, A

CREATING AND READING BACK SEQUENTIAL DATA FILES 97

This inefficient, incomplete solution to a small problem is inconsistent with the desire
to work with the entire dataset together. If your data are simple alphanumeric
strings that include no delimiters or separators, such as commas or carriage returns,
and you wish to print the entire dataset into a file with one PRINT # statement, then
follow the format shown below, with a “forced” comma between the variables. The
comma acts as a separator, but you must “force” it between the variables by enclosing
it in quotation marks.

270 PRINT #1, N$; ","; Ps; ","; A

Notice the comma after the buffer number, the semicolon following each variable,
and each of the commas in quotation marks.

For the record, we found that the semicolons are optional to accomplish the same
purpose. Nonetheless, we use semicolons in case your system requires it.

A caution: If your program reads data from DATA statements, a carriage return
can become a part of the string when the string is placed into the data file. This
inclusion of a carriage return as part of the string itself can later cause problems, for
instance, if you are reading data from the data file and then using it to print a report.

920 DATA THUMB TACKS, BATTERIES, PENCILS
A carriage return can be included at the end of the string PENCILS, the last item in
that DATA statement. To avoid that surreptitious carriage return, include that DATA

statement item inside quotation marks: “PENCILS.”

(a) Write a program segment that will READ all of the strings from line 920 above
and then print the strings to file buffer number 2.

(a) 240 READ N1s, N2%, N3$
250 PRINT #2, Ni1s; ","; N2s; ","; N3$

The hard-to-remember part of printing strings to a file is when you want your
strings to include commas or to purposely include carriage returns.

LET B$ = "PUBLIC, JOHN Q."

98 DATA FILE PROGRAMMING IN BASIC

You would expect that the statement,

PRINT #1, B$

executed after the B$ assignment statement, would take the entire string enclosed by
quotation marks and place it into the file as one string. But it doesn’t! The quota-
tion marks are essentially ignored. The comma actually separates PUBLIC from
JOHN Q. in the file, breaking the one name into two separate data items! The
solution is to “force” quotation marks on either side of the entire name string by
using the CHR$() function. CHRS$(34) is the ASCII code for the quote () symbol.
Notice how that is done in this program segment.

240 LET 8% = "PUBLIC, JOHN Q."
250 PRINT #1, CHRS$(34); BS$; CHR$(34)

We found that if we were printing a complete dataset into a file and had to
force the inclusion of quotation marks, we also had to force commas between the
variables.

250 PRINT #1, CHRS$(34); N$; CHR$(34); ","; CHRS$(34); Ps$; CHRS$(34)

The typing alone in the above statement may cause you anxiety. However, you only
need to worry about forcing quotation marks when your string will also include
commas or a carriage return. That should not happen very often, and with careful
planning, it may never be necessary.

Following are some file printing samples and problems. Review the samples.

150 INPUT "ENTER PRODUCT NUMBER:"; P

160 INPUT "ENTER PRICE:"; P1

170 INPUT "ENTER QUANTITY:"; Q

210 PRINT #3, P; P13 Q Remember to use semicolons

between numeric variables.

430 LINE INPUT "ENTER CUSTOMER NUMBER:"; Cs

440 LINE INPUT "ENTER DATE:"; D$

450 PRINT #3, C$; ","; Ds$ Use “forced” commas
between string variables to
separate them.

600 LINE INPUT "ENTER NAME, LAST NAME FIRST:"; NS

610 LINE INPUT "ENTER SUN SIGN:"; S$

i) L]
620 PRINT #3, CHR$(34); N$; CHR$(34); 7,7; S9% Force quotes where

needed.

CREATING AND READING BACK SEQUENTIAL DATA FILES 99

700
710
720
730

LINE INPUT "ENTER SOCIAL SECURITY NUMBER:"; Ss$

INPUT "ENTER NUMBER OF DEPENDENTS:"; D

INPUT "ENTER ANNUAL EARNINGS:"; E

PRINT #3, S$; ","; D3 E With mixed data (numeric and string),

always follow the string variables with
forced commas. Although not always
necessary, it is certainly always safe.

BASIC-80 has an alternate statement to the PRINT # statement, called WRITE

#, for output to data files. With WRITE #, all variables are separated with a comma
and with no forced commas or quotation marks that PRINT # requires in TRS-80
BASIC. This improvement will undoubtedly be available in all MICROSOFT BASICs
eventually. Test your BASIC to see if it has this form of PRINT #. For compatibility
with earlier MICROSOFT BASICs, BASIC-80 also accepts PRINT #.

(a)

The equivalent WRITE # statements to the PRINT # examples above are:

250 WRITE #1, N$, Ps$
210 WRITE #3, P, P1, Q
450 WRITE #3, C$, DS

730 WRITE #3, S$%, D, E

Now it is your turn. Print all data to the file assigned to buffer number 3.

300 INPUT "HOW MANY SAMPLES"; S
310 INPUT "HOW MANY WERE GREEN"; G

320 PRINT

500 LINE INPUT "ENTER TODAY'S DATE:"; Ds

510 LINE INPUT "ENTER CITY NAME:"; C$

520 LINE INPUT "ENTER STATE CODE:"; S$

530 PRINT

800 LINE INPUT "ENTER TITLE, INCLUDE PUNCTUATION:"; T$

810 LINE INPUT "ENTER FIRST LINE OF TEXT:"; Fs$

820 PRINT

900 LINE INPUT "ENTER TITLE OF BOOK:"; Ts

910 LINE INPUT "ENTER AUTHOR'S NAME, LAST NAME FIRST:"; AS

920 INPUT "NUMBER OF PAGES"; P

930 PRINT

100 DATA FILE PROGRAMMING IN BASIC

(a) TRS-80 BASIC:

320 PRINT #3, S; G

530 PRINT #3, Ds$; ","; Ccs; ","; Ss

H

820 PRINT #3, CHRS${(34); T$; CHR$(34); ","; CHRS$(34); F3$; CHR$(34)

930 PRINT #3, T$; ","; CHR3(34); A$; CHR3(34); ","; P

L]

BASIC-80:

320 WRITE #3, S, G
530 WRITE #3, D$, C$, S$
820 WRITE #3, T$, F$

930 WRITE #3, T$, AS, P

As noted earlier, using files requires planning. Your plan should consider:

What to include in each dataset.
2. How large each data item or dataset will be.
3. Whether technical points, such as imbedded commas in strings, must be handled

with special techniques.
4. How to test each data item in the dataset as completely as possible for accuracy

and validity.

With these considerations in mind, here is a program to help you place a simple

inventory from your home or business into a disk file. The introductory module and
possible checks for data validity are included.

ot

100 REM PROPERTY INVENTORY FILE LOAD PROGRAM

110

120 REM VARIABLES USED

130 REM D$ = DESCRIPTION (20)

140 REM N = NUMBER OF ITEMS

150 REM vV = DOLLAR VALUE

160 :

170 REM FILES USED

180 REM PROPERTY = SEQUENTIAL FILE
190 :

200 REM INITIALIZE
210 oPeEN "0", 1, "PROPERTY"

220
230 REM DATA ENTRY ROUTINES
240 LINE INPUT "ENTER ITEM DESCRIPTION:"; D$

280 IF LEN(DS) > 20 THEN PRINT "PLEASE ABBREVIATE TO 20 CHAR. AND
REENTER" : GOTO 240

560 IF LEN(DS) = O THEN PRINT "PLEASE ENTER A DESCRIPTION OR WE CANNOT
CONTINUE": GOTO 240

270 INPUT "HOW MANY ITEMS"; N

280 IF N <> INT(N) THEN PRINT "ENTER INTEGER NUMBERS ONLY.": GOTO 270

290 IF N =< 0 THEN PRINT "THERE MUST BE SOME UNITS. PLEASE ENTER A
QUANTITY": GOTO 270

300 INPUT "WHAT IS THE DOLLAR VALUE OF EACH"; V

310 IF V = <0 THEN 350

320 PRINT #1, D%; ","35 N, V

330 GOTO 240

CREATING AND READING BACK SEQUENTIAL DATA FILES 101

340

350 LINE INPUT "DID YOU REALLY MEAN ZERO VALUE, YES OR NO:"; R$

360 IF LEFT$(R$,1) = "N" THEN PRINT "THEN REENTER THE CORRECT VALUE":
GOTO 300

370 GOTO 320

380 :

400 REM FILE CLOSE ROUTINE
410 CLOSE 1

420

499 END

(a) The above program has one small but important “bug.” Find and describe the
error.

(a) The program never executes the file closing routine at line 400; the CLOSE
statement is needed to assure flushing the last data items from the buffer to
the file.

The problem of how to indicate to the program when to close the file is part
of preplanning. The program should include a way for the user to indicate to the
computer that the user is done with the program for now, or that all data have been
entered. Either of the two procedures shown below could be included in the previous
program for this purpose. The choice is yours.

238 PRINT "TYPE STOP OR";
245 IF D% = "STOP" THEN 410

or

325 LINE INPUT "IS THERE MORE DATA TO ENTER (YES OR NO)?; R$
326 IF LEFTS(R$,1) = "N" THEN 410

This procedure works for terminating a program and closing files, containing
discrete datasets as have been described. But that is not always the case. What about
a variable length dataset — one with no predefined field lengths, such as a data file
of recipes or a file of letters? How do you indicate to the program when one recipe
or letter ends and another begins? And then, how can the computer “sense” the end
of such data when inputting or reading back from the recorded data file?

One popular procedure is to place a flag or “dummy” character at the end of
each dataset as a separator. The dummy character could be any character that would

102 DATA FILE PROGRAMMING IN BASIC

never be part of or found in the data itself. An asterisk (*) is often used as a dummy
separator. Here is one way to insert such markers into the data file, using our inven-
tory program.

322 LINE INPUT "IS THIS THE END OF ONE DATASET?"; RS
324 IF LEFT$(RS$,1) = "yY THEN PRINT #1, wxn

Two reminders: First, when you open a file for output you also destroy all
previous data in that data file. You cannot easily add data to an existing file. This
will be explored in Chapter 5. Second, when you write file programs (or any program),
prepare some written documentation for yourself or other users. At the least, some
description of the file layout is needed. Even you may have trouble seeing how the
program works without some time and effort, six months or more down the line. One
good procedure is to include such information in REMARK statements in the program
itself.

(a) Why is it important to inform the computer that all data to be included in the
data file have been entered?

(a) So that a CLOSE statement can be executed.

READING DATA FROM A FILE

Now that you can output data from the computer to the data file, let’s learn to input
or read data from an existing file. To do this, the most important thing to know is
how the data were placed in the file. After that, reading from a file is simple and
straightforward, with none of the complications that can accompany writing to a file.

To read from a file, you first OPEN the file as an input (“I”) file, and then use
the INPUT # statement.

350 OPEN "IY, 2, "TEMPFIL"
360 INPUT ¥2, A, B$, C

Line 360 will copy three data items from the file into buffer #2 and assign those
first three data items to variables A, BS, and C. On most computer systems, you must
have the correct type of variable (numeric or string) in the INPUT # statement to
match the data that are being input from the data file. If the next data item in the file
is a numeric value, then the next variable in the INPUT # statement should be a
numeric variable. If it isn’t, the program may abort and stop in an error condition,
or some other complication may ensue. Notice that use of commas to separate
variables.

CREATING AND READING BACK SEQUENTIAL DATA FILES 103

Actually, whether the data were placed into the file as a numeric value or a
string does not matter. However, if your program attempts to assign a numeric value
from the file to a string variable in the INPUT # statement, it will be assigned to the
string variable as a string with an error condition. On the other hand, if the next data
item is a string and the INPUT # has a numeric variable waiting for assignment, the
value assigned will be zero, and the program does not abort or terminate.

Is that good or bad? While the problem of having an open file and the program
stopped in an error condition is avoided, the new problem of invalid data takes its
place — and after all that error checking at data entry time to place accurate data into
the file in the first place! To avoid such hassels, be sure you know how the data were
initially placed into the file, whether numeric or string data, and if strings, how long.

Going back to the simple inventory program described earlier in this chapter,
recall that the alphanumeric description (DS$), followed by quantity (N), followed by
dollar value (V) were placed into the file in that order. The variable names D§, N,
and V were used in the program when the data were printed to the file. The variable
names themselves were separate from the data items. Therefore, you can use any
appropriate string or numeric variable name in INPUT # statements when data are
read out of the file into the buffer.

(a) Which of the following statements is appropriate to input data from the property
data file?

(1) 270 INPUT #1, A, B, C

(2) 270 INPUT #1, AS$, B, C
(3) 270 INPUT #1, A, BS, C$

(a) Statement (2)

Below is the companion program to the property inventory program, to read the
property file and print a simple report with the data.

100 REM READ DATA FROM PROPERTY FILE

110 :

120 REM VARIABLES USED

130 REM N$ = DESCRIPTION(20)

140 REM Q = QUANTITY

150 REM D = DOLLAR VALUE

160

170 REM FILES USED

180 REM PROPERTY = SEQUENTIAL FILE
190 3

200 OPEN "I", 1, "PROPERTY"

210

220 REM PRINT HEADINGS

230 PRINT "DESCRIPTION"; TAB(22); "QUANTITY"; "VALUE EACH"

continued on next page

104 DATA FILE PROGRAMMING IN BASIC

240

250 REM FILE READ ROUTINE/REPORT GENERATION ROUTINE
260 INPUT #1, N$, Q, D

270 PRINT N$; TAB(22); Q, D

280 GOTO 260

290

300 REM FILE CLOSE ROUTINE

310 CLOSE

320 END

DESCRIPTION QUANTITY VALUE EACH
FILES 2 49
COMPUTERS 1 4500
GLASSES 24 «5

SDISKS 15 4425

STOP 15 0

INPUT PAST END IN 260

This RUN terminated in an error condition with the message INPUT PAST
END IN 260. (You will get a similar message in all systems.) This was an aborted end
to the program execution. What if you wanted to do more with the data and did not
want the program to terminate when the end of the data file was reached? A techni-
que exists that allows the program to read to the end of the file without the program
stopping at that point. To understand the technique, recall how the data file
“pointer” works.

Just as with regular READ and DATA statements in BASIC, the data file uses
a pointer to point “at” the next data item available in the buffer holding data from
the disk file. When a file is opened, the pointer is positioned at the beginning of the
file and points at the first data item. Each execution of INPUT # or PRINT # pushes
the pointer forward as many places as there are variables the the statement’s variable
list.

PRINT #1, AS moves the pointer one position to the second
data item.
INPUT #1, N, N$ moves the pointer past data items 1 and 2 to

item 3. The pointer is always looking at the
next position.

PRINT #1, W, X, Y, 2 moves the pointer 4 places, so the next data item
added by a PRINT # statement will be at position
5.

When your program uses PRINT # to add data to a file, each PRINT # state-
ment moves the pointer and an end-of-file (EOF) marker ahead. When all data have
been entered, the end-of-file marker is located just past the last data item. The end-
of-file marker is automatically put in place by the computer.

When you INPUT # data from the file, the file pointer is always looking at the
next data item available in the file (or in the buffer, to be more exact). A special
end-of-file statement can be used to detect whether or not the next item is the end-

CREATING AND READING BACK SEQUENTIAL DATA FILES 105

of-file marker. Here is how you might use it in MICROSOFT BASIC.

IF EOF(1) THEN CLOSE 1 : GOTO 800

The number in the EOF() parentheses is the buffer number. Notice that no explicit
comparison follows IF in the IF. . .THEN statement; just the EOF(). So the IF. ..
THEN statement says that if the next data item is the end-of-file marker, then close
the file and go to line 800. If the next data item is not the EOF marker, then
continue executing the program with the next line numbered statement.

Now you can modify the previous program so it does not terminate with an
end-of-file error condition. Add line 255 and modify line 280 as shown below.

255 IF EOF(1) THEN 310
280 60TO 255 < Don’t forget this!

An alternate modification would be as follows:

255 IF EOF(1) THEN CLOSE 1 : STOP

With either “fix,” the file will be properly closed.

Reference manuals for various computer systems show considerable variation in
explanations on how the pointer and end-of-file marker work. However, the ideas
expressed here should work on any system.

(a) What does EOF stand for?
(b) What does the number of the EOF function parentheses indicate?

(a) end-of-file (marker)
(b) the buffer number for the data file being examined for an end of file marker

PERMANENTLY REMOVING FILES FROM DISKS

Situations will arise when you want to erase a data file from a disk. It may be a
temporary file such as those created for demonstration programs in this book or a file
that is of no further use to you for other reasons. The ubiquitously named command
in MICROSOFT BASIC is KILL. Using this command deletes the file named after
the command from the disk, destroying the file’s contents and deleting all reference
to the file from the disk file directory. KILL is a system command that is entered

106 DATA FILE PROGRAMMING IN BASIC

and executed like RUN or LIST. KILL can also be used in an executable statement
in MICROSOFT BASIC, but we discourage this use except, perhaps, for very temporary
files. Here is the form:

KILL "TEMPFIL"

Notice that the file name is enclosed by quotation marks. Use the file destroying
command very carefully, as the action is irreversible. Once the file has been killed

or destroyed, there is no going back. Accidentally destroying the wrong file, especially
if you have not made a backup copy, can mean that you wasted hours or days enter-
ing data into a file. Think carefully before using KILL.

Be sure you understand the difference between KILL and CLOSE. CLOSE
merely disassociated a buffer from the file it was assigned to and flushes the buffer
contents onto the disk if you are outputting data. After a CLOSE statement, the
data file is still recorded on the disk. KILI. eliminates the file entirely from the disk,
as well as all reference to it in the file directory. It is very important that a file be
already closed before it is KILLed. Failure to CLOSE a file before you KILL it can
create irreversable errors on other disk data. which can cause trouble when you use
the disk again.

We have used the word “copy” to describe how the INPUT # statement works
when data are transferred from the disk data file into the computer’s memory. Copy
implies that the data in the file do not change when they are input into the part of
the computer’s electronic memory designated as the buffer. The data in the file are
unaffected and unchanged and remain in the file for another use. The only way to
change data in a data file is with a PRINT # statement or WRITE #.

You can fill a file with data and read from the same file in the same program.}
But you must always CLOSE a file after outputting or recording information into it
before you can reopen the file for input or copying data back into the computer
memory. You must OPEN “O” to output, then close and OPEN “I” to read back the
data.

The following program illustrates the procedure to open and close the files at
the appropriate times. Quality assurance data are entered from a manufacturing pro-
cess into a file. The program will read the QA values from the file and accumulate
the number of responses in each category (1 through 6) in an array, and then print
the results. The program is self-documented by REMARK statements.

RESULTS 0F QUALITY CONTROL DATA
QA NUMBER QUANTITY
1 4

- SRE RESNIE
S U NN N

CREATING AND READING BACK SEQUENTIAL DATA FILES

107

140 REM FILE INPUT/0UTPUT DEMO

150

160 REM ENTER QUALITY CONTROL RESULTS INTO FILE
170 REM PREPARE SIMPLE REPORT FROM FILE

180 :

190 REM VARIABLES USED

200 REM F$ = FILE

210 REM N% = QA MEASURE

220 REM vV = QA MEASURE

230 REM C() = COUNTING ARRAY

240 REM FILES USED = USER DEFINED
250

260 REM INITIALIZE ARRAY

270 FOR X = 1 TO 6: LET C(X) = 0: NEXT X

280 :

290 REM INITIALIZE FILE

300 LINE INPUT "ENTER FILE NAME:"; F$

310 OPEN "O", 1, Fs

320 :

330 REM DATA ENTRY ROUTINE

340 PRINT "ENTER INTEGER NUMBERS 1-6 ONLY., ENTER 99 TO sSTOP"
350

360 INPUT "QA NUMBER:"; N%

370 IF N% = 99 THEN 430

380 IF N% < 1 OR N% > 6 THEN PRINT "PLEASE REENTER AS 1-6 ONLY":
390 PRINT #1, N%

400 GOTO 360

410

420 REM FILE CLOSE

430 CLOSE 1

440

450 REM OPEN FILE TO READ

460 OPEN "1", 1, Fs

470 3

480 REM READ FILE AND ACCUMULATE DATA IN ARRAY
490 IF EOF(1) THEN 550

500 INPUT #1, V

510 LET C(V) = C(V) + 1

520 GOTO 490

530

540 REM PRINT REPORT FROM ARRAY

550 CLS

560 PRINT "RESULTS OF QUALITY CONTROL DATA"
570 PRINT

580 PRINT "QA NUMBER", "QUANTITY"
590 FOR V = 1 TO 6

600 PRINT V, C(V)

610 NEXT V

620

630 REM CLOSE FILE ROUTINE

640 CLOSE 1

650 :

660 END

Refer to the program above to answer the following questions:

(@) Through which statement does the computer obtain the name of the data file?

GOTO 360

108 DATA FILE PROGRAMMING IN BASIC

(b) Which statement checks the parameters for the quality control numbers?

(c) How does the computer know that all data have been entered?

(d) Why are two CLOSE 1 statements used in the same program?

(e) What does line 490 do?

(f) Inline 510, how many different values can V have?

(2) line 300

(b) line 380

(c) user enters 99 as input value

(d) the data file must be closed after output and after input

(e) checks each file input data item to see if it is the end of file marker
O six (1 to 6)

Help us write another program that first creates a data file called DEMOI, and
then displays the contents of that data file. Complete lines 200, 240, 270, 310, 360,
370, and 400. (Read the REMs and comments.)

100 REM** DATAFILE DEMONSTRATION

110 REM
120 REM VARIABLES USED:
130 REM DS = DATA ITEM OUTPUT VARIABLE
140 REM R$ = DATA ITEM INPUT VARIABLE
150 REM X = FOR-NEXT LOOP CONTROL VARIABLE
160 REM
170 REM FILE NAME: DEMOD1
180 REM FILE DATA FORMAT: ONE STRING DATA ITEM
190 REM
(a) 200 : REM OPEN THE FILE

210 REM** USING A FOR—NEXT LOOP, PLACE 8 STRINGS (DATA ITEMS) INTO
THE DATAFILE

220 FOR X = 1 TO 8

230 LET D$ = "TEST" + STRS$(X)

(b) 240 : REM PRINT TO THE FILE
250 NEXT X
260 REM*** NOW CLOSE THE FILE

CREATING AND READING BACK SEQUENTIAL DATA FILES 109

(©

@

O]
&)

(®

270
280
290
300

310
320
330
340
350

360

370
380
390

400
410

REM** A PRINT STATEMENT TELLS US SO FAR SO GOOD...

PRINT "FILE WRITTEN AND CLOSED"

REM** RE-QOPEN THE FILE FOR INPUT. WE NEED NOT USE THE SAME
BUFFER NUMBER,

REM** NOW INPUT FROM THE FILE AND PRINT THE DATA ITEMS.
REM** USE EOF TO CHECK FOR ENDMARK OF FILE TO AVOID AN ERROR
REM** MESSAGE IF ALL DATA HAS BEEN INPUT FROM THE DATAFILE.
REM** USE CURRENT BUFFER NUMBER IN EOF PARENTHESES,

PRINT R$
GOTO 360

PRINT "FILE CLOSED"

(2)
(b)
©
@
()

(e

(2)

200
240
270
310
360
370
400

Now

oPeEN "o", 1, "DEMO1"
PRINT #1, D$

CLOSE 1

OPEN "I1", 2, "DEMO1"
IF EOF(2) THEN 400
INPUT #2, RS

CLOSE 2

you could have used
Buffer #1, again.

show everything that will be printed or displayed when this program is

RUN

110 DATA FILE PROGRAMMING IN BASIC

(a) RUN
FILE WRITTEN AND CLOSED
TEST 1 :
TEST 2
TEST 3
TEST 4
TEST 5
TEST 6
TEST 7
TEST 8
FILE CLOSED

READY

One unique feature of file programs is that sometimes nothing appears to be
happening when the program is RUN. There may be no printed report or any CRT
display other than RUN and READY. To the novice, this seeming lack of activity
may be alarming. Be forewarned.

And again BEWARE of reopening an existing data file as an output with OPEN
“0” in MICROSOFT BASIC. You will destroy all the data in that data file; data
cannot be recovered. Having made that tragic mistake ourselves, we feel obligated to
keep warning you.

(a) Which statements in the previous program help assure the user that “invisible”

data file activity has taken place?

(a) lines 290 and 410

CREATING AND READING BACK SEQUENTIAL DATA FILES

111

CHAPTER 4 SELF-TEST

The problems in this self-test require you to write programs to store data in data files

and then to write companion programs to display the data in those data files. All

data files that you create in this self-test will be used in Chapter 5, so don't skip this
section. You will need a system with a disk drive to actually store the programs. If
you have only a cassette data storage system, write the programs anyway, as only

minor modification will be needed in most cases to adapt the programs to cassette

data file application, covered in Chapter 6. The introductory module is given so your
solutions will look something like the solution provided. Save the programs and files

for later use, modification, and reference. Try out your solutions and try to debug

the programs before looking at the solutions provided. Good luck and keep on hackin'.

1. (a) Write a program to fill a data file with the information and format specified

below:

Four data items per dataset.

First two data items are strings.

Second two data items are numeric values entered as strings.

Include data entry checks for null strings.

For the numeric values assigned to strings, include data entry tests to see
that only numeric values were entered. Then convert these strings to

numeric values assigned to numeric variables before storing them in the

data file.

Place at least five datasets in the data file.

110
120
130
140
150
160
170
180
190

(b) Write a companion program to display the contents of the data file you

REM VARIABLE LIST

REM AS,BS = ALPHA DATA
REM Cs(C), D3(D) = NUMERIC DATA
REM FILES USED = PROBI1

oPEN "O", 1, "PrOB1"

created in 1(a).

112 DATA FILE PROGRAMMING IN BASIC

CREATING AND READING BACK SEQUENTIAL DATA FILES 113

2. (a) Write a program to make a data file called GROCERY that stores your
grocery shopping list. include the description or name of each grocery item
(maximum of twenty characters) and a numeric value telling the quantity
of that item to buy. Store at least six datasets in the file.

100
110
120
130
140
150
160
170
180
190
200

REM
REM
REM
REM
REM

REM
REM

GROCERY LIST FILE APPLICATION
INTRODUCTORY MODULE

VARIABLES USED
D$ = ITEM DESCRIPTION
Q = QUANTITY TO ORDER

FILES USED
F$ = USER ENTERED INPUT FILE

114 DATA FILE PROGRAMMING IN BASIC

(b) Write a companion program to display the contents of GROCERY.

CREATING AND READING BACK SEQUENTIAL DATA FILES 115

116 DATA FILE PROGRAMMING IN BASIC

3.

(2)

Write a program to enter the following data in a data file for a customer
credit file maintained by a small business. Each dataset consists of three
items:

1. five-digit customer number (must have exactly five digits)

9. customer name (twenty characters maximum)

3. customer credit rating (a single digit number 1, 2, 3, 4, 01 5)

Include data entry checks for null entries and for the parameters set forth
in the list above. Enter at least twelve datasets in the data file. Remember,
the customer numbers must be different for each customer and should be
in ascending order, i.e., each larger than the previous onc, such as 19652,
19653, 19654, etc.

110 =

120 REM VARIABLES USED

130 REM F$ = FILE NAME

140 REM cs = CUST. #

160 REM NS = CUST. NAME

180 REM R$ AND R = CREDIT RATING VALUE
190 : Qs = USER RESPONSE

CREATING AND READING BACK SEQUENTIAL DATA FILES 117

118 DATA FILE PROGRAMMING IN BASIC

(b) Write a companion program to display the contents of the file.

CREATING AND READING BACK SEQUENTIAL DATA FILES 119

4. (a)

Write a program to enter data into a transaction data file. A transaction file
is the data on a business transaction, such as that of a bank, a retail store,

or a mail order business. For our example, each transaction produces a dataset
stored as one, fourteen character string with three fields, as shown below:

1 _5/67/8 . _ _ 14
/ f N
Account # Transaction code Amount
(five characters) (two characters) (seven characters)

Account number = five-character field
Transaction code = two-character field (for a bank, 1 = check, 2 = deposit, etc.)
Amount = seven-character field

Your program should allow the user to select (input) a name for the data file.
Create two different data files with your program, with seven datasets (trans-

actions) in each data file. Use the account numbers given below for the two

files.

File #1 File #2
10762 10761
18102 18203
43611 43611
43611 80111
43611 80772
80223 80772
98702 89012

(Note: only the account numbers are shown here; the complete datasets also
include transaction codes and amounts.)

110

120 REM VARIABLES USED

130 REM F1$% = FILE NAMES

140 REM D1s$ = DATASETS FROM FILE 1,2

150 REM A% = ACCOUNT NUMBER

160 REM T$ = TRANSACTION CODE

170 REM C$% = CASH AMDUNT

180 REM X = FOR-NEXT LOOP CONTROL VARIABLE
190

200 REM FILES USED

210 REM ONE QUTPUT FILE -~ USER DEFINED
220

120 DATA FILE PROGRAMMING IN BASIC

CREATING AND READING BACK SEQUENTIAL DATA FILES 121

(b) Write a companion program to display the contents of a data file with the
above dataset format. Again, the file name should be user entered.

122 DATA FILE PROGRAMMING IN BASIC

5. (a) Write a program to load a data file named ADDRESS with (surprise!) names
and addresses. The data has the format shown below, with each dataset
containing five items in fields within one string

55
/1 20/21 40/41 50/12/53 57/

name address city state zip code

Include appropriate data entry checks and field padding routines. Enter at least
six addresses in the data file.

100 REM PROB 45 SOLUTION

110 :

120 REM VARIABLES USED

130 REM N$(20) = NAME

140 REM A$(20) = ADDRESS

150 REM C$(10) = CITY

160 REM Ss(2) = STATE

170 REM Z8(5) = ZI1P CODE

180 REM D$(57) = ENTIRE DATASET
190 :

200 REM FILE USED = ADDRESS

CREATING AND READING BACK SEQUENTIAL DATA FILES 123

(b) Write a companion program to display the contents of ADDRESS.

124 DATA FILE PROGRAMMING IN BASIC

6. (a)

Write one program and use it to create three different data files called
LETTERI1, LETTER2, and LETTER3. Each file should contain the text of
a form letter with at least three lines of text per letter. Each line of text in
the letters is to be entered and stored as one dataset.

110
120
130
140
150
160
170
180

REM
REM
REM
REM

REM

VARIABLES USED
R$ = TEXT LINE
F$ = FILE NAME VARIABLE

FILES USED
LETTER (PLUS F3$ WHICH IS USER SELECTED)

CREATING AND READING BACK SEQUENTIAL DATA FILES 125

126 DATA FILE PROGRAMMING IN BASIC

(b) Write a companion program to display the data file above selected by the user.

CREATING AND READING BACK SEQUENTIAL DATA FILES 127

Answer Key
1 a.
100 REM PROB 4~1A SOLUTION
110 =
120 REM VARIABLE LIST
130 REM A$, BS = ALPHA DATA
140 REM C$(C), DS(D) = NUMERIC DATA
150
160 REM FILES USED = PROBI1
170
180 OPEN "O", 1, "PROB1"
190 :

200 REM DATA ENTRY ROUTINE
210 LINE INPUT "ENTER DATA ITEM:"; AS

220 IF LEN(AS) = 0 THEN PRINT "PLEASE ENTER SOMETHING": GOTO 210
230 LINE INPUT "ENTER DATA ITEM 2:"; B$

240 IF LEN(BS) = 0 THEN PRINT "PLEASE ENTER SOME DATA": GOTO 230
250 LINE INPUT "ENTER NUMERIC DATA:"; C$

260 IF LEN(CS) = 0 THEN PRINT "PLEASE ENTER SOMETHING": GOTO 250
270 IF VAL(CS$S) = O THEN PRINT "PLEASE ENTER NUMBERS ONLY": GOTO 250
280 LET C = VAL(CS)

290 LINE INPUT "ENTER NUMERIC ITEM 2:"; D$

300 IF LEN(D$) = O THEN PRINT "PLEASE ENTER SOMETHING": GOTO 290

310 IF VAL(DS$S) = O THEN PRINT "PLEASE ENTER NUMBERS ONLY": GOTO 290
320 LET D = VAL(DS)

330

340 PRINT #1, As;","; Bs;","; C; D
350 :

360 LINE INPUT "MORE DATA?"; RS
370 IF LEFT$(R$,1) = "vy" THEN 210
380 '
390 CLOSE

400 PRINT "FILE CLOSED."

410 END

1b.

100 REM PROB 4—18 SOLUTION

110 =

120 REM VARIABLE LIST

130 REM A$,B$ = ALPHA DATA
140 REM C,D = NUMERIC DATA
150 =

160 REM FILES USED = PROBI1

170

180 OPEN "1", 1, "PROB1"

190 :

200 REM DATA ENTRY FROM FILE
210 =

220 IF EOF (1) THEN 270

230 INPUT #1, A%, B$, C, D

240 PRINT A%, BS, C, D

250 GOTO 220

260

270 CLOSE

280 PRINT: PRINT "ALL DATA DISPLAYED AND FILE CLOSED."
290 END

128 DATA FILE PROGRAMMING IN BASIC

2 a.

110 REM PROB 4=—-2A SOLUTION (GROCERY LIST)

120

130 REM INTRODUCTORY MODULE

140 REM VARIABLES USED

150 REM D$ = ITEM DESCRIPTION

160 REM Q = QUANTITY TO ORDER

170

180 REM FILES USED

190 REM F$ = WUSER ENTERED INPUT FILE

200

210 REM FILE INITIALIZATION

220

230 LINE INPUT "ENTER NAME OF INPUT FILE"; Fs

240 OPEN "I", 1, F$

250 OPEN "O", 2, "TEMPFIL"

260

270 :

280 REM DATA ENTRY ROUTINE

290

300 PRINT "ENTER 'STOP' WHEN FINISHED"

310 PRINT

320 LINE INPUT "ENTER ITEM DESCRIPTION:"; D$

330 IF D$ = "sSTOP" THEN 480

340 IF LEN(DS) = 0 THEN PRINT "PLEASE ENTER A DESCRIPTION OR 'STOP'":
GOTO 320

350 IF LEN(DS$) > 20 THEN PRINT “PLEASE LIMIT DESCRIPTION TO 20 CHARS.
AND REENTER": GOTO 320

360 INPUT "ENTER QUANTITY:"; Q

370 IF Q >= 1 AND @ < 10 THEN 440

380 PRINT "YOU ENTERED A QUANTITY OF"; Q

390 LINE INPUT "IS THAT WHAT YOU WANTEG?"; RS

400 IF LEFT$(R$,1) = "N" THEN 360

410 =

420 REM WRITE TO FILE ROUTINE

430

440 PRINT #2, Ds; "," ; Q

450 GOTO 320

460

470 REM FILE CLOSE

480 CLOSE 1, 2

490 PRINT "FILES CLOSED,"

500 END

2b.

100 REM GROCERY LIST FILE APPLICATION (PROB 4-2B)

110 :

120 REM VARIABLES USED

130 REM D$ = ITEM DESCRIPTION

140 REM G = QUANTITY TO ORDFR

150

160 REM FILES USED

170 REM F$ = USER ENTERED INPUT FILE

180 :

190 REM FILE INITIALIZATION

200 LINE INPUT "ENTER NAME OF INPUT FILE:"; Fs3

210 oPEN "I", 1, FS$

220 :

230 REM READ AND PRINT FILE

CREATING AND READING BACK SEQUENTIAL DATA FILES 129

240 .
250 PRINT "ITEM", "QUANTITY": PRINT
260 IF EQF(1) THEN 320

270 INPUT #1, D$, Q

280 PRINT DS, Q

290 GOTO 260

300

310 REM CLOSE ROUTINE

320 CLOSE

330 END

3 a.
100 REM SELF TEST PROB 4—3A SOLUTION
110 REM CREDIT FILE LOADER

120 :

130 REM VARIABLES USED

140 REM F$ = FILE NAME

150 REM C$ = CUST. #

160 REM NS = CUST, NAME

170 REM R$ AND R = CREDIT RATING VALUE
175 REM Q% = USER RESPONSE TO CONTINUE DATA ENTRY
180

190 REM FILES USED

200 REM INPUT FILE = USER DEFINED

210 :

220 REM INITIALIZE FILES

230 CLS

240 LINE INPUT "ENTER FILE NAME:"; Fs$

250 OPEN "O", 1, FS

260 :

270 REM DATA ENTRY ROUTINE
280 PRINT "ENTER 'STOP' TO FINISH"

290 PRINT

300 LINE INPUT "ENTER CUSTOMER NUMBER:"; C$

310 IF C$ = "sSTOP" THEN 560

320 IF LEN(CS$) = 0 THEN PRINT "ENTER NUMBERS OR 'STOP'": GOTO 290

330 IF LEN(CS$) = <> 5 THEN PRINT "ENTRY ERROR. REENTER WITH 5 DIGITS.":
GaTO 290

340 IF VAL(C$) = 0 THEN PRINT "ENTRY ERROR. NUMBERS ONLY.": GOTO 290

350

360 LINE INPUT "ENTER CUSTOMER NAME:"; Ns$

370 IF LEN(NS$) = 0 THEN PRINT "PLEASE ENTER A NAME, NOW.": GOTO 360
380 IF LEN(NS) > 20 THEN PRINT "PLEASE LIMIT NAME TO 20 CHARACTERS AND
REENTER": GOTO 360

390

400 PRINT

410 LINE INPUT "CREDIT RATING:"; RS

420 IF LEN(RS$) <> 1 THEN PRINT "ONLY A ONE DIGIT NUMBER IS ACCEPTABLE.":
GOTO 410

430 IF VAL(RS$) < 1 OR VAL(R$) > 5 THEN PRINT "NUMBERS 1-5 ONLY, PLEASE.,"
: GOTO 410

440 LET R = VAL(RS)

450

460 REM PRINT NEW DATA TO FILE

470 PRINT #1, C$; ","; Ns; ","; R

480 3

490

500 REM REQUEST TO CONTINUE DATA ENTRY

continued on next page

130 DATA FILE PROGRAMMING IN BASIC

510 CLS

520 LINE INPUT "DO YOU HAVE MORE DATA TO ENTER?"; Qs
530 IF LEFT$(Q$,1) = "Y" THEN 250

540 :

550 REM CLOSE FILES

560 CLOSE

570 PRINT "J0B COMPLETED"

580 END

30b.

100 REM SELF TEST PROB 4-3B SOLUTION
110 REM CREDIT FILE DISPLAY

120

130 REM VARIABLES USED

140 REM F$ = FILE NAME

150 REM C$ = CUST. #

160 REM N$ = CUST. NAME

170 REM R = CREDIT RATING VALUE
180

190 REM FILES USED

200 REM INPUT FILE = USER DEFINED
210 :

220 REM INITIALIZE FILES

230 CLS

240 LINE INPUT "ENTER FILE NAME:"; Fs$
250 OPEN "I", 1, F$

260

270 REM READ/PRINT FILE

280 PRINT "cusT #", "CUST NAME", "CREDIT RATING"
290 IF EOF(1) THEN 350

300 INPUT #1, C$, N$, R

310 PRINT C$, N$, R

320 GOTO 290

330

340 REM CLOSE FILE

350 CLOSE

360 PRINT: PRINT "ALL DATA DISPLAYED AND FILE CLOSED."
370 END

4 a.

100 REM PROB 4-4A SOLUTION

110 :

120 REM VARIABLES USED

130 REM F1$ = FILE NAMES

140 REM D1$ = DATASETS FROM FILE 1,2

150 REM As$ = ACCOUNT NUMBER

160 REM T$ = TRANSACTION CODE

170 REM C$ = CASH AMOUNT

180 REM X = FOR-NEXT LOOP CONTROL VARIABLE
190 :

200 REM FILES USED

210 REM ONE OUTPUT FILE - USER DEFINED
220 :

230 CLEAR 500

240 REM FILE INITIALIZATION

250 LINE INPUT "ENTER QUTPUT FILE NAME:"; F1s
260 OPEN "O", 1, F1$

270 CLS

280

290 REM DATA ENTRY/ TESTS

CREATING AND READING BACK SEQUENTIAL DATA FILES 131

300 PRINT "ENTER '—-1' TO END DATA ENTRY."

310 LINE INPUT "ENTER ACCOUNT NUMBER (S DIGITS)"; As

320 IF As = "-1" THEN 550

330 IF VAL(A%) = 0 THEN PRINT "PLEASE MAKE AN ENTRY.": GOTO 300

340 IF LEN(A$) <> 5 THEN PRINT "YOU ENTERED "; AS$; ". PLEASE REENTER.":
6OTO 300

350 LINE INPUT “ENTER TRANSACTION CODE (1 DIGIT):"; Ts

360 REM DATA TEST

370 IF VAL(T$) = 0 THEN PRINT "PLEASE MAKE AN ENTRY.": GOTO 350

380 IF LEN(T$) <> 1 THEN PRINT "YOU ENTERED "; T$; ". PLEASE REENTER.":
GOTO 350

390 LINE INPUT “ENTER THE AMOUNT (DO NOT INCLUDE A 's$'):"; Cs

400 REM DATA TESTS

410 IF VAL(C$) = 0O THEN PRINT "PLEASE MAKE AN ENTRY.": GOTC 390

420 IF VAL(CS$) > 999.99 THEN PRINT "MAXIMUM AMOUNT IS 999.99. YOU
ENTERED "; C$; ". PLEASE REENTER.": GOTO 390

430 FOR X = 1 TO LEN(CS)
440 IF ASC(MIDS(C%,X,1)) >= 48 AND ASC(MID3(C$,X,1)) <= 57 OR ASC(MIDS

(C$,X,1)) = 46 THEN 460

450 PRINT "INVALID ENTRY. ONLY NUMBERS AND DECIMAL POINT ALLOWED.":
GOTO 390

460 NEXT X

470 IF LEN(CS$) < 6 THEN LET Cs$ = " " + C$; GOTO 470

480 LET D1%$ = A% + T$ + C%

490 ¢

500 PRINT #1, D1$

510 CL.S

520 GOTO 300

530

540 REM CLOSE FILE

550 CLOSE

560 PRINT "FILE CLOSED"

570 END

4 b.

100 REM PROB 4-4B SDLUTION

110

120 REM VARIABLES USED

130 REM F1$ = FILE NAMES

140 REM D1%$ = DATASETS FROM FILE 1,2

150

160 REM FILES USED

170 REM ONE INPUT FILE - USER DEFINED

180

190 CLEAR 500

200 REM FILE INITIALIZATION

210 LINE INPUT "ENTER INPUT FILE NAME:"; F13

220 OPEN "I", 1, F1%

230 :

240 REM FILE READ AND PRINT

250 PRINT "ACCOUNT #", “coDg", "AMOUNT"

260 IF EQF (1) THEN 320

270 INPUT #1, DI1s

280 PRINT LEFTS$(D1%,5), MID$(D1%,6,1), RIGHTS(D1%,6)
290 GOTO 260

300

310 REM CLOSE

320 CLOSE

330 PRINT : PRINT "ALL DATA DISPLAYED AND FILE CLOSED."
340 END

132 DATA FILE PROGRAMMING IN BASIC

5 a.

100 REM PROB 4—5A

110 =

120 REM VARIABLES USED

130 REM N$(20) = NAME

140 REM A$(20) = ADDRESS

150 REM C$(10) = CITY

160 REM S$(2) = STATE

170 REM Z$(5) = ZIP CODE

180 REM D$(57) = ENTIRE DATASET
190

200 REM FILES USED = ADDRESS
210 =

220 REM INITIALIZE

230 CLEAR 1000
240 OPEN "0O", 1, "ADDRESS"

250

260 REM DATA ENTRY/TESTS

270 LINE INPUT "ENTER NAME:"; NS

280 REM DATA TESTS

290 IF LEN(NS$) < 20 THEN LET N$ = N$ + " " : GOTO 290
300 LINE INPUT "ENTER ADDRESS:"; A$

310 REM DATA TEST

320 IF LEN(AS$) < 20 THEN LET A$ = A$ + " " : GOTO 320
330 LINE INPUT "ENTER CITY NAME:"; C3

340 REM DATA TESTS

350 IF LEN(C$) < 10 THEN LET C$ = C$ + " " : GOTO 350
360 LINE INPUT "ENTER STATE CODE:"; S%

370 REM DATA TEST

380 IF LEN(S$) <> 2 THEN PRINT "PLEASE ENTER 2 CHARACTER CODE": GOTO
360

390 LINE INPUT "ENTER ZIP CODE:"; Z$

400 IF LEN(ZS$S) <> 5 THEN PRINT "PLEASE ENTER S5-DIGIT CODE": GOTO 390

410

420 LET DS = N$ + A$S + C$ + S$ + 7%

430 ¢

440 PRINT #1, DS$

450 :

460 LINE INPUT "MORE ENTRIES?"; RS
470 IF LEFT$(RS$,1) = "Y" THEN 270
480

490 CLOSE

500 PRINT "FILE CLOSED."

510 END

5b.

100 REM PROB 4-~5B SOLUTION

110

120 REM VARIABLES USED

130 REM N$(20) = NAME

140 REM A$(20) = ADDRESS

150 REM C$(10) = CITY

160 REM $$(2) = STATE

170 REM Z$(5) = ZIP CODE

180 REM D$(57) = ENTIRE DATASET
190

200 REM FILES USED = ADDRESS
210 :

220 REM INITIALIZE

230 OPEN "I1", 1, "ADDRESS"

CREATING AND READING BACK SEQUENTIAL DATA FILES

133

240
250
260
270
280
290
300
310
320
330
340
350
360
370
380

6 a.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
320
330
340
350

6 b.
100
110
120
130
140
150
160
170
180
190
200
210

REM READ/PRINT FILE

IF EOF(1) THEN 360

INPUT #1, D$

PRINT LEFTS$(DS$,20)

PRINT MID$(D$,21,20)

PRINT MID$(D$,41,10), MID$(D$,51,2), MID$(D$%,53,5)
PRINT

LINE INPUT "PRESS ENTER TO CONTINUE"; R$

GOTO 260
REM CLOSE FILE

CLOSE

PRINT : PRINT "FILE CLOSED"

END

REM PROB 4—-6A SOLUTION

REM VARIABLES USED

REM R$ = TEXT LINE

REM F$ = FILE NAME VARIABLE

REM FILES USED

REM LETTER (PLUS F$ WHICH IS USER SELECTED)
REM INITIALIZE

CLEAR 1000
LINE INPUT "ENTER FILE NUMBER:"; F$
LET F$ = "LETTER" + Fs3

oPEN "O", 1, F$

PRINT "ENTER TEXT LINE OR STOP"
LINE INPUT RS

IF R$ = "STOP" THEN 330

PRINT #1, RS

GOTO 260

REM CLOSE FILE

CLOSE

PRINT "FILE "; Fs$: " CLOSED."
END

REM PROB 4-68B SOLUTION

REM VARIABLES USED

REM R$ = TEXT LINE

REM F% = FILE NAME VARIABLE

REM FILES USED

REM LETTER (PLUS F$ WHICH IS USER SELECTED)

REM INITIALIZE

LINE INPUT "ENTER FILE NUMBER:"; Fs

continued on next page

134 DATA FILE PROGRAMMING IN BASIC
220 LET F$ = "LETTER" + Fs

230 OPEN "I", 1, Fs

240

250 REM READ/PRINT FILE CONTENTS
260 IF EOF(1) THEN 320

270 INPUT #1, RS

280 PRINT R$

290 GOTO 260

300 :

310 REM CLOSE FILES

320 CLOSE

330

CHAPTER FIVE

Sequential Data File
Utility Programs

Objectives: When you finish this chapter you will be able to:

1. Write a program to make a copy of a sequential data file.

2. Write a program to add data to an existing sequential file.

3. Write a program to change the data in an existing sequential file.

4. Write a program to examine the contents in a sequential file and to change,
add, or delete data.

5. Write a program to merge the contents of two sequential files into one file,
maintaining the numeric or alphabetic order of the data.

6. Write a program that uses or combines selected data from more than one
sequential file.

Now that you understand the BASIC statements to create and use sequential data
files, let’s build on this with more advanced techniques, including writing some file utility
programs that help in your overall programming using data files. You will also develop
embryonic file applications to practice what you have learned and provide a basis from
which to develop personally useful programs. Most of the data files used in this chapter
are created with programs you should have written for the Chapter 4 Self-Test, so if you
skipped that, go back and write those programs before starting this chapter.

MAKING A DATA FILE COPY

A very useful file utility program is one that makes a duplicate copy of your data file.
Your computer system may be equipped with a copy program, written in machine
language, as part of the system software. Check the reference manual to see if it is.
If so, you can make back-up copies of data files or copy a file from the disk in one
disk drive to another. A file copy utility program in BASIC not only allows you to
make backup copies of data files, it can also be incorporated into programs to add data
to existing data files.

You have the background to write a file copying program; follow these steps:

(1) Open the input file (the one you want to copy).
(2) Open the output file (the one you are making the copy into).
(3) Test the input file for EOF. If found, go to step (7).

135

136 DATA FILE PROGRAMMING IN BASIC

(4) Input the next dataset from the input file.

(5) Print the dataset to the new file (the copy).

(6) Repeat steps (3) to (5) until the EOF for the input file is encountered.
(7) Close both files.

Assume that you are going to copy a file that contains an unknown number of datasets,
each containing two twenty-five character strings, followed by two numeric values.
Using the on-line REMARKS as a guide, fill in the blanks in lines 240, 250, 320, 330,
340, and 410.

(a) 100 REM COPY FILE PROGRAM
110
120 REM VARIABLES USED
130 REM AS, BS 25 CHAR, STRINGS
140 REM C., D = NUMERIC DATA
150 REM F$, F1$ = USER SELECTED FILE NAMES
160
170 REM FILES USED
180 REM SEQUENTIAL FILE NAMES ARE USER SELECTED
190
200 REM FILE INITIALIZATION
210

220 LINE INPUT "ENTER NAME OF INPUT FILE"; Fs

230 LINE INPUT "ENTER NAME OF QUTPUT FILE"; F1s

240 :REM OPEN INPUT FILE

250 : REM OPEN QUTPUT FILE

260

300 REM READ/PRINT FILE TO FILE

310

320 :REM TEST EOF (1)

330 :REM INPUT FROM FILE #1
340 :REM PRINT TO FILE #2
350 GOTO 320

360

400 REM CLOSE FILE ROUTINE

410 :REM CLOSE FILES

420

499 END

(a) 100 REM COPY FILE PROGRAM

110
120 REM VARIABLES USED

130 REM AS, BS 25 CHAR, STRINGS

140 REM C, D = NUMERIC DATA

150 REM F$, F1%$ = USER SELECTED FILE NAMES

160

170 REM FILES USED

180 REM SEQUENTIAL FILE NAMES ARE USER SELECTED
190

200 REM FILE INITIALIZATION

210

220 LINE INPUT "ENTER NAME OF INPUT FILE:"; Fs$
230 LINE INPUT "ENTER NAME OF QUTPUT FILE:"; F1%

240 OPEN "I1", 1, F$

SEQUENTIAL DATA FILE UTILITY PROGRAMS 137

280
260
300
310
320
330
340
350
360
400
410
420
499

OPEN "Q", 2, F13
REM READ/PRINT FILE TO FILE

IF EOF(1) THEN 410

INPUT #1, AS, B$, A, B
PRINT #2, As; "," ; Bs; ","; A; B
GOTO 320

REM CLOSE FILE ROUTINE

CLOSE 1, 2

END

(Note: Did you remember to force the commas? If not, your file copy will not be

exact.)

(a) To review the steps for this kind of program, write the corresponding line num-
ber(s) for each step in the outline.

1.

B

o kW

7.

Open the input file.
Open the output file.

Test the input file for EOF. If found, go to step 7.

Input the next dataset from the input file.

Print the dataset to the new file.

Repeat steps (3) and (5) until the EOF for the input file is encountered.

Close both files.

(b) When you RUN this program, what appears on your screen?

138 DATA FILE PROGRAMMING IN BASIC

240
250
320
330
340
320, 330, 340
410

(a)

NN R RN

{(b) Rrun

ENTER NAME OF INPUT FILE:
ENTER NAME OF OUTPUT FILE:

READY

It can be unsettling to get no more than that from a program when so much
internal activity is supposed to be taking place. The final READY is your only clue
that your program completed its task. But you don’t know for sure. We have two
suggestions.

Add a statement at line 420 that prints a message indicating the job is complete
— for example, 420 PRINT “COPY COMPLETED.” A statement such as that lets you
know the program did execute past the CLOSE statement at line 410. (That’s why
we chose line 420.)

A second suggestion is to OPEN the copied data file as input, read one or more
datasets from it, and print them on the screen. This will verify that at least that much
was done.

430 OPEN "I", 1, F1s

440 FOR X = 1 TO 3

450 INPUT #1, AS$, B$, A, B

460 PRINT A%, BS, A, B : REM*** PRINT DATA ON SCREEN
470 NEXT X

480 CLOSE 1

You now have a complete file copying utility program. You can use it to copy
any data file by simply changing the INPUT # and PRINT # statements at 330 and
340 to conform to the data format or datasets in the particular data file you want to
copy.

Adding Data to the End of a Sequential File

Chapter 4 indicated that it is not easy to add data to an existing sequential data file.
Here’s why: In TRS-80 BASIC and BASIC-80, you cannot add data to an existing
sequential file at all because when you open a data file as output, you destroy its
previous contents. The way around this problem (there’s always a way) is to follow
these steps.

SEQUENTIAL DATA FILE UTILITY PROGRAMS 139

1. Copy the existing file into a temporary file.
2. Make the additions of data to the temporary file.
3. Copy the temporary file back to the original file with the new data.

Let’s try an easy application. Assume you are using your personal computer to
prepare a grocery list for your twice-monthly shopping trip. (See problem 2 of the
Chapter 4 Self-Test.) Every few days you think of new items to be added to the list.
Each dataset consists of one twenty-character string for the description and one
numeric value for the quantity of the item needed. You can develop a program to
enter the first datasets into the file, as well as all items to be added later.

Use the following procedure to add new data to the end of an existing
sequential data file:

(1) Open the input file.

(2) Open the temporary file as an output file.

(3) Test the input file for EOF. If found, go to step (7).

(4) Input the next dataset.

(5) Print the dataset to the new (temporary) file.

(6) Repeat steps (3) to (5) until the EOF for the input file is encountered.

(7) Enter and test the new data to be added to the end of the temporary
file. Include a test for the user option to end data entry.

(8) Print the new dataset to the temporary file.

(9) Repeat steps (7) and (8) until all new data are entered.

(10) Close both files.

(11) Open the temporary file as an input file.

(12) Open the old file as an output file (destroying its previous contents).

(13) Repeat steps (3) to (5) until all old and new data have been copied
back into the old file and the EOF is encountered.

(14) Close both files.

First look at the introductory module and the program routine to enter the first
datasets.

100 REM GROCERY LIST FILE APPLICATION
110 REM INTRODUCTORY MODULE

120 =

130 REM VARIABLES USED

140 REM D% = ITEM DESCRIPTION

150 REM Q = QUANTITY TO ORDER

160 :

170

180 =

190 REM FILES USED

200 REM F$ = USER ENTERED INPUT FILE

210 REM TEMPFIL = TEMPORARY FILE
220 =

140 DATA FILE PROGRAMMING IN BASIC

(a) To write the next segment, fill in the blank statement lines according to the
instructions given in the on-line REMARKS (lines 280 and 290).

250 REM FILE INITIALIZATION
260
270 LINE INPUT "ENTER NAME OF INPUT FILE:"; Fs
280 :REM OPEN INPUT FILE
290 : REM OPEN QUTPUT FILE
300

(a) 250 REM FILE INITIALIZATION
260
270 LINE INPUT "ENTER NAME OF INPUT FILE:"; Fs
280 OPEN "I", 1, Fs3
290 OPEN "o", 2, "TEMPFIL"
300 :

Notice that you open the input file, then the output file, using buffer 1, then buffer
2. This order is programming style rather than a requirement, but it makes the program
easier to read.

The next program segment makes the copy into the temporary file (TEMPFIL).

310 REM FILE COPY ROUTINE

320 :

330 GOSUB 8320

340 :

350

800 REM FILE COPY SUBROUTINE
810 REM COPIES FILE 1 TO FILE 2
820 :

830 IF EOF(1) THEN RETURN
840 INPUT #1, D%, Q

850 PRINT #2, Ds; ","; Q
860 GOTO B30
870

This segment completes the copy to the temporary file. A subroutine was used
(at line 800), since the same statements can be used by another segment of this program.
Check your understanding of the program so far by answering the following questions:

(a) If there are no data in the input data file, will the copy routine work?

(b) Assuming that data are read from the input file and copied to the output file,

SEQUENTIAL DATA FILE UTILITY PROGRAMS 141

where will the file pointer in the output file be located when the program
RETURNSs from the subroutine to line 3407

() Yes, as long as the file exists on the disk. The data file may be empty or full of
data. Note: If you get an error message such as FILE NOT FOUND IN 280,
merely open the file in direct mode and RUN the program again.

(b) The pointer will be located just past the last data item in TEMPFIL, ready for
more data to be added to the file.

Having determined that the program you are assembling would place the data
pointer correctly, add another segment allowing the entry of new data and write it to
the temporary file. Fill in the statements with on-line REMARKS (lines 410, 430,
520, and 560).

(a) 360
370
380
390
400
410
420

430
440
450
460
470
480
490
500
510
520
530
540
550
560
570

REM DATA ENTRY ROUTINE

PRINT "ENTER 'STOP' WHEN FINISHED"

PRINT
LINE INPUT "ENTER ITEM DESCRIPTION:"; D3
REM TEST FOR 'STOP'
IF LEN(DS$) = 0 THEN PRINT "PLEASE ENTER A DESCRIPTION OR 'sSTOP'":
GOTO 400
:REM TEST FOR LENGTH
INPUT "ENTER QUANTITY:"; Q

IF @ => 1 AND Q < 10 THEN 520
PRINT "YOU ENTERED A QUANTITY OF"; Q
LINE INPUT "IS THAT WHAT YOU WANTED?"; RS

IF LEFTS$(R$,1) = "N" THEN 440
REM WRITE TO FILE ROUTINE
REM WRITE TO OUTPUT FILE
GOTO 400
REM FILE CLOSE
REM CLOSE FILES
REM DATA ENTRY ROUTINE

(a) 360
370
380
390
400

PRINT "ENTER 'STOP' WHEN FINISHED"
PRINT
LINE INPUT "ENTER ITEM DESCRIPTION:"; DS

142 DATA FILE PROGRAMMING IN BASIC

410
420

430

440
450
460
470
480
490
500
510
520
530
540
550
560
570

IF D$ = "STOP" THEN 560

IF LEN(D$) = 0 THEN PRINT "PLEASE ENTER A DESCRIPTION OR 'sToP'":
GOTO 400

IF LEN(D$) > 20 THEN PRINT "PLEASE LIMIT DESCRIPTION TO 20 CHARS.

AND REENTER": GOTO 400

INPUT "ENTER QUANTITY:"; Q

IF @ > 1 AND Q@ < 10 THEN 520

PRINT "YOU ENTERED A QUANTITY OF"; Q

LINE INPUT "IS THAT WHAT YOU WANTED?"; RS
IF LEFT$(R$,1) = "N" THEN 440

REM WRITE TO FILE ROUTINE

PRINT #2, D$; ","; Q

GOTO 400
REM FILE CLOSE
CLOSE 1,2

With the previous segment added to the program, the major work of the program
is done. The old data and the new data are now in TEMPFIL. Next copy TEMPFIL
back to the original file. Here the subroutine is used again. Complete the program
segment (lines 610, 620, 650, and 690).

Gﬂ 600 REM INITIALIZE FILES
610 REM OPEN INPUT FILE
620 REM OPEN OUTPUT FILE
630 :
640 REM FILE COPY ROUTINE
650 REM EXIT TO SUBROUTINE
660
670 REM CLOSE FILES
680 CLOSE 1,2
690 REM JOB DONE MESSAGE
700 STOP
710

(a) 600 REM INITIALIZE FILES
610 OPEN "I", 1, "TEMPFIL"
620 OPEN "O", 2, Fs
630
640 REM FILE COPY ROUTINE
650 GOSUB 830
660 :

670 REM CLOSE FILES

680 CLOSE 1,2

690 PRINT "FILE COPY COMPLETED"
700 STOP

710 :

SEQUENTIAL DATA FILE UTILITY PROGRAMS 143

If your completion of the program segment was correct, you noticed that
TEMPFIL becomes the input file.

(a) What happens to the old contents of file F$ when line 620 is executed?

(a) The previous contents are destroyed when the file is opened as an output file
(and then replaced with the contents of TEMPFIL).

You may want to make a backup copy of the file F$ before using the program
to add to the file in case something unforeseen happens to the data.

Following is a complete listing of the program you have developed. In this case
a KILL statement could be included for the temporary file since it unnecessarily uses
disk file space. It could be inserted as

695 KILL "TEMPFIL".

100 REM GROCERY LIST FILE APPLICATION
110 REM INTRODUCTORY MODULE

120 :

130 REM VARIABLES USED

140 REM D$ = ITEM DESCRIPTION

150 REM Q = QUANTITY TO ORDER

160

170

180

190 REM FILES USED

200 REM F$ = USER ENTERED INPUT FILE
210 REM TEMPSIL = TEMPORARY FILE

220

25C REM FILE INITIALIZATION

260 :

270 LINE INPUT "ENTER NAME OF INPUT FILE"; Fs$
280 OPEN "1", 1, Fs

290 OPEN "g", 2, "TEMPFIL"

300 :

310 REM FILE COPY ROUTINE

320

330 GOSUB 830

340 =

350

360 REM DATA ENTRY ROUTINE

370

380 PRINT "ENTER 'STOP' WHEN FINISHED"

390 PRINT

400 LINE INPUT "ENTER ITEM DESCRIPTION:"; D3
410 IF Ds = "STOP" THEN 560

continued on next page

144 DATA FILE PROGRAMMING IN BASIC

420 IF LEN(DS) = 0 THEN PRINT "PLEASE ENTER A DESCRIPTION OR 'sTOP'":
GOTO 400

430 IF LEN(D$) > 20 THEN PRINT "PLEASE LIMIT DESCRIPTION TO 20 CHARS.
AND REENTER": GOTO 400

4640 INPUT "ENTER QUANTITY:"; Q

450 IF Q >= 1 AND G < 10 THEN 520

460 PRINT "YOU ENTERED A QUANTITY OF"; @

470 LINE INPUT "IS THAT WHAT YOU WANTED?"; RS

480 IF LEFT$(R$,1) = "N" THEN 440
490

500 REM WRITE TO FILE ROUTINE
510

520 PRINT #2, D$; ","; @

530 GOTO 400

540

550 REM FILE CLOSE

560 CLOSE 1,2

570

600 REM INITIALIZE FILES

610 OPEN "I1", 1, "TEMPFIL"
620 OPEN "O", 2, Fs

630 :

640 REM FILE COPY ROUTINE
650 GOSUB 830

660 :

670 REM CLOSE FILES

680 CLOSE 1,2
690 PRINT "FILE COPY COMPLETED"

700 STOP

710

800 REM FILE COPY SUBROUTINE
810 REM COPIES FILE 1 TO FILE 2
820

830 IF ECF{1) THEN RETURN
840 INPUT #1, D$, Q

850 PRINT #2, D$; ","; Q
860 GOTO 830

870

(a) Write the corresponding program line number(s) for each step in the outline.

(1) Open the input file.

(2) Open the temporary file as an output file.
(3) Test the input file for EOF. If found, go to step (7).
(4) Input the next dataset.

(5) Print the dataset to the new (temporary) file.

(6) Repeat steps (3) to (5) until the EOF for the input file is encountered.

(7) Enter and test the new data to be added to the end of the temporary file.

Include a test for the user option to end data entry.

(8) Print the new dataset to the temporary file.

SEQUENTIAL DATA FILE UTILITY PROGRAMS 145

©
(10)
(1n
(12)
(13)

(14)

@ M
)
3
4)
(%)
(6
(N

Repeat steps (7) and (8) until all new data are entered.

Close both files.

Open the temporary file as an input file.

Open the old file as an output file (destroying its previous contents).

Repeat steps (3) to (5) until all old and new data have been copied back
into the old file and the EOF is encountered.
Close both files.

280 (8) 520

290 (9) lines 400 to 530
830 (10) 560

840 (11) 610

850 (12) 620

830, 840, 850 (13) 830, 840, 850
lines 400 to 480 (14) 680

You can use another procedure to add data to the end of a sequential data file
in BASIC. The success of this procedure depends on how much data the file contains
and the amount of available memory in the computer itself. Follow these steps:

NN AW

Open the file as an input file.

Load the contents of the data file into one or more arrays.
Close the input file.

Reopen the same file in output mode.

Write or “dump” the contents of the array into the file.
Add new data to the end of the output file.

Close the file.

Use this procedure only if the file is rather small and the datasets contain all
data items packed into one string variable. If these two circumstances are present,
you are not likely to encounter errors. However, when files are large or data are
placed into more than one array or into a two-dimensional array, then the probability
increases that data will get lost or “forgotten,” resulting in errors.

We recommend the two-file procedure as illustrated by the grocery list program.
It is clean and neat!

146 DATA FILE PROGRAMMING IN BASIC

Changing Data in a File

Remember, you cannot write data into an input file, and you cannot read from an
output file. This means that data already placed in a file cannot be changed easily,
but can be changed. The procedure should look familiar: Copy all the unchanged
data into a temporary file, make the changes in the temporary file, and then copy
the temporary file back into the original file. A few tricks will be explained, as you
are guided in writing this program.

The example uses a customer credit file for a small business. Each dataset con-
sists of three items:

1. five-digit customer number (must have exactly five digits)
2. customer name (twenty characters maximum)
3. customer credit rating (a single digit number 1, 2, 3, 4, or 5)

The program task is to change the credit rating of selected customers, with the user
entering the customer number and new credit rating. Below is a typical RUN sequence.
Underlined items are user entries.

RUN

ENTER FILE NAME: CREDITI

ENTER "STOP"™ TO FINISH

ENTER CUSTOMER NUMBER: 13762

ERROR, CUST. NOT FOUND. CHECK CUST. # & REENTER

ENTER CUSTOMER NUMBER: 13763

PALED MECHANICS - RATING 3
NEW CREDIT RATING: 2
MORE ENTRIES (YES OR NO)? YES

ENTER CUSTOMER NUMBER: 11123

ABC SERVICE LTD — RATING 1
NEW CREDIT RATING: 2

MORE ENTRIES (YES OR NO)? NOD
JOB COMPLETED

READY

While the procedure outlined below is tailored to the particular data structure
of the example program, the basic idea is adaptable to data files with different data
structures (more or less data items in a dataset, or data in fielded strings).

(1) Open the input file.
(2) Open the temporary output file.
(3) Enter the data item to search for, with data entry checks. Include user
option for ““no more searches.”
(4) Check for EOF in input file. If found:
(a) Display a message that the data search was unsuccessful.
(b) Close both files (to reset data pointers to beginning of files).
(c) Repeat steps (1) to (4) until the user specifies “no more searches.”

SEQUENTIAL DATA FILE UTILITY PROGRAMS 147

(5)
(6

Q)
(8)
©
(10)
(11
(12)

(13)
(14)

Read a complete dataset from the input file.

Test customer number entered by user against customer number in the dataset
read from the input file in step (5). Write rejected datasets to the temporary file.
Display the data item found for user; also ask user to enter changes.

Include data entry checks.

Print dataset with new data to temporary (output) file.

Print remainder of input file to temporary (output) file.

Close both files.

Open both files, but this time the original file is the output file and the
temporary file is the input file. Note that the original contents of the
original file are destroyed.

Print the contents of the temporary file (now revised) into the original

file with an EOF check.

Close both files.

Give the user the option to repeat the procedure starting at step (1).

The program will be developed a segment at a time, with blanks for you to fill
in according to the on-line REMARKS. Below is the introductory module, which you
understand by now, followed by the data entry routine with entry checks. Fill in the
blanks in lines 350, 360, and 370.

(a) 100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350

360

REM CREDIT FILE CHANGER

REM VARIABLES USED

REM F$ = FILE NAME

REM C$ = CUST. #

REM Cl% = CUST. #

REM N$ = CUST. NAME

REM R$ = ENTRY STRING

REM R,R1 = CREDIT RATING VALUE

REM FILES USED

REM INPUT FILE = USED DEFINED

REM OQUTPUT FILE = "TEMPFIL"

REM INITIALIZE FILES

cLs

LINE INPUT "ENTER FILE NAME:"; Fs3

OPEN "I", 1, Fs$

OPEN "Q", 2, "TEMPFIL"

REM DATA ENTRY ROUTINE

PRINT "ENTER 'STOP' TO FINISH"

PRINT

LINE INPUT "ENTER CUST. #:"; Cs

IF C$ = STOP THEN 790
REM NULL STRING

TEST WITH MSG

REM TEST FOR

5 DIGITS

148 DATA FILE PROGRAMMING IN BASIC

370 : REM TEST FOR
ALPHANUMERIC
ENTRY

380

(a) 350 IF LEN(CS) = 0 THEN PRINT "ENTER NUMBERS OR sToP": GOTO 320
360 IF LEN(C$) <> 5 THEN PRINT "ENTRY ERROR., REENTER WITH S

DIGITS":GOTO 320

370 IF VAL(CS$) = 0 THEN PRINT "ENTRY ERROR. NUMBERS ONLY": GOTO 320

Now for the interesting part. The program searches through the data file for

the customer the user requested.

(2)

(b)

(©)

380
390
400
410
420
430

440
450

460

470
480

(d)

When searching the data file for the customer and encountering the EOF marker
without finding the customer, what should the program do?

Before another search is made for a customer in the file, what must be done
to the file?

Fill in lines 410 and 430 below.

REM FILE SEARCH ROUTINE
IF EOF (1) THEN 450
:REM READ FROM THE FILE TO C1%, N$, R
IF C$ = C1$ THEN 500
:REM REJECTS ARE TO BE PRINTED TO THE
TEMPFIL
GOTO 400
PRINT "ERROR MESSAGE. WE CANNOT FIND CUST. #:"; C$; "ON THE FILE.
PLLEASE CHECK YOUR NUMBER AND REENTER"
CLOSE 1,2 : REM RESET FILE POINTERS TO BEGINNING
GOTO 270

n
H

Why was variable C1$ used in line 410 instead of C$?

SEQUENTIAL DATA FILE UTILITY PROGRAMS 149

©

(@)
(b)
(©
(@

©

If you delete line 460 and then RUN the program, what will happen if an in-
correct customer number is entered and then a correct customer number?

Print an error message indicating that the customer was not in the file (see the
sample RUN presented earlier). (see line 410 and 450 above.)

Close and reopen the files to reset the file pointers to the beginning of the data
(very important!). (see line 460 above.)

410 INPUT #1, C1%, N3$, R

430 PRINT #2, C1%; ","; Ns; ","; R

Two values would have been assigned to C$, creating a program error. Note the
error message at line 450. Also notice the CLOSE and OPEN to reset the data
file pointer to the beginning of the file (line 460).

The EOF check in line 400 will detect the EOF marker in both cases, and the
error message will be printed both times.

When the file has been searched and the correct customer found, the program

prints the customer name on the screen (line 510) as a double check to the computer
operator that the correction is being made for the right customer.

480
490
500
510
520
530

540

550
560
570
580
590

REM CUST # FOUND. PROCEED WITH DATA ENTRY

PRINT
PRINT N$, "CREDIT RATING:"; R
LINE INPUT "NEW CREDIT RATING:"; R%

IF LEN(RS$) <> 1 THEN PRINT "ONLY A ONE DIGIT NUMBER IS ACCEPTABLE":
GOTO %20

IF VAL(R$) < 1 OR VAL(RS$) > 5 THEN PRINT "NUMBERS 1-5 ONLY, PLEASE":
GOTO 520

LET R1 = VAL(RS$)

REM PRINT NEW INFO TO TEMPFIL
PRINT #2, C%; ","; Ns; ","; R1

In line 580, the new customer rating is written into the TEMPFIL, along with

the accompanying customer number and name. You now have completed routines to
search the original file, and to place old and new data into TEMPFIL.

150 DATA FILE PROGRAMMING IN BASIC

(a) Considering the location of the file pointer in FILE1, what should the program
do next?

(a) Write the remaining data in the input file (FILE1) to the output file (TEMPFIL).

Fill in the blanks in this segment (610, 620 and 630).

(a) s90 :
600 REM PRINT REMAINDER OF FILE TO TEMPFIL ,
610 :REM TEST FOR EOF(1). GOTO CLOSE
620 :REM READ FROM #1
630 :REM PRINT TO #2
640 GOTO 610
650 :

660 REM CLOSE FILES
670 CLOSE 1,2
680 =

(a) 610 IF EOF(1) THEN 670
620 INPUT #1, C$, N$, R
630 PRINT #2, Cc$; ","; Ns; ","; R

The final program segment should copy TEMPFIL back into the original file.
Complete the file program lines indicated (700, 710, 740, 750, and 790).

(a) 680 :
690 REM INITIALIZE AND COPY TEMPFIL TO FILE
700 REM OPEN INPUT FILE
710 :REM OPEN DUTPUT FILE
720
730 IF EOF(1) THEN 790
740 tREM READ INPUT FILE
750 :REM PRINT TO OUTPUT FILE
760 GOTO 730
770 :
780 REM CLDSE FILES
790 :REM CLOSE
B0OO :
810 REM CONTINUE REQUEST
820 CLS
830 LINE INPUT "DO YOU HAVE MORE?"; RS
840 IF LEFTS$(R$,1) = "y" THEN 270

850 PRINT "JOB COMPLETED"
860 :

SEQUENTIAL DATA FILE UTILITY PROGRAMS 151

(a) 700 OPEN “I”, 1, TEMPFIL
710 OPEN “0”, 2, F$
740 INPUT #1, C$, N§, R
750 PRINT #2, C$; “ ,”; N§; “, "™ R
790 CLOSE 1,2

If you RUN this program with large files, each change will take considerable
computer time. If you enter the data in the original file in customer number order,
and also enter the changes in customer number order, the need to repeatedly execute
the file copy routine (lines 600 to 800) after each change is eliminated, reducing
computer time.

Here is a complete listing of the credit file change program so that you can see it
all at once:

100 REM CREDIT FILE CHANGER
110 :

120 REM VARIABLES USED

130 REM F$ = FILE NAME

140 REM C$ = CUST. #

150 REM C1% = CUST. #

160 REM N$ = CUST. NAME

170 REM R$ = ENTRY STRING

180 REM R,R1 = CREDIT RATING VALUE
190

200 REM FILES USED

210 REM INPUT FILE = USER DEFINED
220 REM OUTPUT FILE = "TEMPFIL"
230

240 REM INITIALIZE FILES

250 CLS

260 LINE INPUT "ENTER FILE NAME:"; Fs

270 OPEN "I", 1, Fs
280 OPEN "g", 2, "TEMPFIL"

290 :

300 REM DATA ENTRY ROUTINE

310 PRINT "ENTER 'STOP' TD FINISH"

320 PRINT

330 LINE INPUT "ENTER CUST. #:"; Cs

340 1IF Cc$ = "STOP" THEN 790

350 IF LEN(CS) = O THEN PRINT "ENTER NUMBERS OR STOP": GOTO 320

360 IF LEN(CS$) <> 5 THEN PRINT "ENTRY ERROR. REENTER WITH 5 DIGITS":
GOTO 320

370 IF VAL(C$) = O THEN PRINT "ENTRY ERROR. NUMBERS ONLY": GOTO 320
380 :

390 REM FILE SEARCH ROUTINE

400 IF EOF (1) THEN 450

410 INPUT #1, C1%, N$, R

420 IF C$ = C1% THEN 500

430 PRINT #2; C1%; ","; N$; ",": R
440 GOTO 400
450 PRINT "ERROR MESSAGE. WE CANNQOT FIND CUST. #:"; C$; "ON THE FILE.

PLEASE CHECK YOUR NUMBER AND REENTER"

continued on next page

152 DATA FILE PROGRAMMING IN BASIC

460 CLOSE 1, 2 : REM RESET FILE POINTERS TO BEGINNING

470 GOTO 270

480 :

490 REM CUST # FOUND. PROCEED WITH DATA ENTRY

500 PRINT

510 PRINT N$, "CREDIT RATING:"; R

520 LINE INPUT "NEW CREDIT RATING:"; RS

530 IF LEN(RS) <> 1 THEN PRINT "ONLY A ONE DIGIT NUMBER IS ACCEPTABLE":
GOTO 520

540 IF VAL(R$) < 1 OR VAL(RS$) > 5 THEN PRINT '"NUMBERS 1-5 ONLY, PLEASE":
GOTO 520

550 LET R1 = VAL(RS)

560

570 REM PRINT NEW INFO TO TEMPFIL

580 PRINT #2, Cs; ","; Ns; ","; R1

590

600 REM PRINT REMAINDER OF FILE TO TEMPFIL

610 IF EOF(1) THEN 670

620 INPUT #1, C$, N3, R

630 PRINT #2, Cs$; ","; Ns$; ","; R

640 GOTO 610

650

660 REM CLOSE FILES

670 CLOSE 1, 2

680 :

690 REM INITIALIZE AND COPY TEMPFIL TO FILE

700 oPEN "I", 1, "TEMPFIL"

710 OPEN "O", 2, Fs

720 :

730 IF EOF(1) THEN 790

740 INPUT #1, C$, N$, R

750 PRINT #2, Cs$; ","; Ns; ","; R

760 GOTO 730

770

780 REM CLOSE FILES

790 CLOSE 1, 2

800 :

810 REM CONTINUE REQUEST

820 CLS

830 LINE INPUT "DO YOU HAVE MORE?"; RS

840 IF LEFT$(RS$,1) = "Y" THEN 270

850 PRINT "JoB COMPLETED"

860 :

(a) Write the corresponding program line number(s) for each step in the outline.

(1) Open the input file.

(2) Open the temporary output file.
(3) Enter the data item to search for, with data entry checks. Include user
option for “no more searches.”

(4) Check for EOF in input file. If found:

(a) Display a message that the data search was unsuccessful.

(b) Close both files (to reset data pointers to beginning of files).

SEQUENTIAL DATA FILE UTILITY PROGRAMS 153

(c) Repeat steps (1) to (4) until the user specifies “no more searches.”

(5) Read a complete dataset from the input file.
(6) Test customer number entered by user against customer number in the
dataset read from the input file in step (5). Write rejected datasets to the

temporary file.

(7) Display the data item found for user; also ask user to enter changes.

Include data entry checks.

(8) Print dataset with new data to temporary (output) file.

(9) Print remainder of input file to temporary (output) file.

(10) Close both files.

(11) Open both files, but this time the original file is the output file and the
temporary file is the input file. Note that the original contents of the

original file are destroyed.

(12) Print the contents of the temporary file (now revised) into the original
file with an EOF check.
(13) Close both files.

(14) Give the user the option to repeat the procedure starting at step (1).

(b) Modify the Credit Rating program to change customer names instead of credit
rating (companies do change names). Only five program lines are involved.
Show them below.

(@ (1) 270
(2) 280

154 DATA FILE PROGRAMMING IN BASIC

(3) lines 310 to 370
(4) 400
(a) 450
(b) 460
(c) lines 270 to 460
(5) 410
(6) 420,430
(7) lines 510 to 550
(8) 580
{8) lines 610 to 640
(10) 670
(11) 700, 710
(12) lines 730 to 760
(13) 790
(14) 830, 840

(b) 520 LINE INPUT "ENTER NEW NAME:"; NS

530 IF LEN(N$) = 0 THEN PRINT "PLEASE ENTER THE CORRECT NAME":
GOTO 520

540 IF LLEN(N$) > 20 THEN PRINT "20 CHAR. MAX, PLEASE REENTER":
GOTO 520

550 REM*** STATEMENT DELETED

580 PRINT #2, C$; ","; Ns; ","; R

Only five changes were necessary in this modularly designed program. A factor
that minimized changes was that the entire data set was dealt with all at once instead
of reading one data item at a time. Remember this when writing future programs.

Editing, Deleting, and Inserting File Data

Whenever we work extensively with files, we write a small utility program that lets us
read through the file, one item at a time, to verify that everything is as it should be.

A properly written data file editing program also lets you make changes in the file data
as it reads through the file. Our example will use the previous application, the Credit
Rating File. Remember that the dataset consists of:

1. five-digit customer number stored as a string
2. a twenty character customer name
3. a credit rating, stored as a numeric value from 1 to 5

The first program below allows you to look at each dataset, one item at a time,
with the prompt “PRESS ENTER TO CONTINUE.” (The entry key on your terminal
may say RETURN or something similar instead of ENTER.) The PRESS ENTER TO
CONTINUE technique is very popular for CRT screen-oriented systems. The program
allows the user to review the data displayed for the length of time needed and then
move on to the next dataset. The program then refreshes or clears the screen to
remove ‘‘screen clutter’” before the next data are displayed. Examine the program to

see how the user INPUT statement is used in the PRESS ENTER TO CONTINUE
technique.

SEQUENTIAL DATA FILE UTILITY PROGRAMS

155

100 REM _CREDIT FILE EDITOR(1)
110

120 :

130 REM PRESS ENTER TO CONTINUE

140

150 REM VARIABLES USED

160 REM C$ = CUST #(5)

170 REM N$ = CUST NAME(20)

180 REM R = CREDIT RATING

190 REM R$ = STRING VARIABLE RESPONSE
200 REM F$ = FILE NAME

210

220 REM FILES USED

230 REM INPUT FILE [S USER DEFINED
240

250 REM FILE INITIALIZATION

260 LINE INPUT "ENTER FILE NAME:";

270 OPEN "I", 1, Fs

280

290 REM READ FILE AND DISPLAY

300 CLS

310 IF EOF(1) THEN 440
320 PRINT "PRESS ENTER TO CONTINUE"
330 INPUT #1, C$, N$, R

340 PRINT C$

350 LINE INPUT R$

360

370 PRINT NS

380 LINE INPUT R$

390

400 PRINT R

410 LINE INPUT RS

420 GOTO 300

430 REM CLOSE FILE

440 CLOSE

450 PRINT "J0OB COMPLETED"
460

(a) What is assigned to RS in lines 350, 380, and 410?

(b) Since R$ acts as a dummy variable in the program above, what is the purpose

of lines 350, 380, and 410?

(¢) How often was the screen “refreshed” in the program above?

156 DATA FILE PROGRAMMING IN BASIC

(a) Nothing (a null string)

(b) Keeps the data items on the CRT display until the user presses ENTER to
continue. (Program waits at input statement until ENTER key is pressed, with
or without any other entry.)

{c) Before (or after) each complete dataset of three items was displayed.

The next version of this program allows the user to change any data item dis-
played on the screen or accept it “as is” by pressing ENTER to continue. The pro-
cedure includes copying the credit data file to a temporary file “TEMPFIL” as you
read through the file making changes. Here is the first part of the program, with the
capability of changing the customer number.

100 REM CREDIT FILE EDITOR(2)
110

120 =

130 REM TYPE CHANGE OR C TO CHANGE ITEM
140 REM PRESS ENTER TO CONTINUE

150
160 REM VARIABLES USED

170 REM C$ = CUST #(5)

180 REM N$ = CUST NAME(20)

190 REM R = CREDIT RATING

200 REM R$ = STRING VARIABLE RESPONSE
210 REM F$ = FILE NAME

220 =

230 REM FILES USED

240 REM INPUT FILE IS USER DEFINED
250 REM QUTPUT FILE = TEMPFIL

260

270 REM FILE INITIALIZATION

280 LINE INPUT "ENTER FILE NAME:"; Fs3

290 OPEN "I", 1, Fs

300 OPEN "O", 2, "TEMPFIL"

310

320 REM READ FILE AND DISPLAY

330 CLS

340 IF EOF(1) THEN 750
350 PRINT "TYPE CHANGE OR 'C' TO CHANGE ITEM"
360 PRINT "PRESS ENTER TO CONTINUE"

370 INPUT #1, C$, N$, R

38C PRINT C$

390 LINE INPUT RS

400 IF LEFT$(RS$,1) = "Cc" THEN GOSUB 550
530

540 REM CHANGE CUST # SUBROUTINE

550 LINE INPUT "ENTER NEW CUST. #:"; Cs

560 IF LEN(C$) = O THEN PRINT "ENTER NUMBERS PLEASE": GOTO 550

570 IF LEN(CS) <> 5 THEN PRINT "ENTRY ERROR. REENTER WITH 5 DIGITS":
GOTO 550

580 IF VAL(CS3) = 0 THEN PRINT "ENTRY ERROR. NUMBERS ONLY": GOTO 550

590 RETURN

600

SEQUENTIAL DATA FILE UTILITY PROGRAMS 157

Notice the few additions: the output file (lines 250, 300); the instructions
changes (lines 130, 350); and the entry test (line 400). For reasons that will become
apparent, a subroutine (lines 540 to 590) is used for entering the change to the
customer number. The same data entry checks are used that were originally used in
the credit file creating program. A caution: This program segment does not write
the new customer number to TEMPFIL. In order to maintain identical files, use
one statement to write the entire dataset into TEMPFIL as was originally done with
the credit rating data file. If you are particularly sharp, you may have noted that the
new customer number was assigned to C$, replacing the old customer number stored
there. Can you look ahead and see why?

Now it’s your turn. Using the customary clues, write a routine that will allow
a change in customer name. Use the subroutine format like that above. Fill in lines
620, 630, and 640.

410
420 PRINT N$
430 LINE INPUT RS$

440 IF LEFT$(R%$,1) = "C" THEN GOSUB 620

600

610 REM CHANGE CUST NAME SUBROUTINE

620 :REM DATA ENTRY

630 :REM NULL
STRING TEST

640 :REM TEST FOR LENGTH

650 RETURN
660

410

420 PRINT N$

430 LINE INPUT RS

440 IF LEFT$(R$,1) = "Cc" THEN GOSUB 620

600

610 REM CHANGE CUST NAME SUBROUTINE

620 LINE INPUT "ENTER NEW NAME:"; N$

630 IF LEN(N$) = O THEN PRINT "PLEASE, WE NEED A NEW NAME":
GOTO 620

640 IF LEN(NS$) > 20 THEN PRINT "PLEASE REENTER NAME WITH 20
CHARS OR LESS": GOTO 620

650 RETURN

660

158 DATA FILE PROGRAMMING IN BASIC

Nice work! Now, write a program segment that allows a change to be entered
for the credit rating. Upon returning from the subroutine, have the program record
the entire dataset, including changes if any, to TEMPFIL. Fill in lines 510, 680,
690, 700, and 710.

450
460 PRINT R

470 LINE INPUT R$

480 IF LEFT$(R$,1) = "C" THEN GOSUB 680

490

500 REM PRINT TO TEMPFIL

510 :REM PRINT TO TEMPFIL
520 GOTO 330

530

660 1

670 REM CHANGE CREDIT RATING SUBROUTINE

680 :REM DATA ENTRY(RS$)
690 tREM LENGTH TEST
700 :REM VALUE 1-% TEST

710 {REM CONVERT $ TO #(R)
720 RETURN

730

450
460 PRINT R
470 LINE INPUT R3%

480 IF LEFT$(R$,1) = "C" THEN GOSUB 680

490

500 REM PRINT TO TEMPFIL

510 PRINT #2, C3%; ","; Ns; ","; R

520 GOTO 330

530 :

660

67C REM CHANGE CREDIT RATING SUBROUTINE

680 LINE INPUT "ENTER NEW CREDIT RATING:"; RS

690 IF LEN(RS$) <> 1 THEN PRINT "ONLY A ONE DIGIT NUMBER IS ACCEPTABLE":
GOTO 680

700 IF VAL(R$) < 1 OR VAL(R$) > 5 THEN PRINT "NUMBERS 1-5 ONLY, PLEASE":
GOTO 680

710 LET R = VAL(RS)
720 RETURN
730

Did you get line 510 correct? Carefully planned, the routine that prints or
writes to the file uses the same variables C$, N§, and R, that can contain either new
data or old, unchanged data items.

(a) Describe the last routine needed to complete this program.

SEQUENTIAL DATA FILE UTILITY PROGRAMS 159

(a) Copy TEMPFIL back into the original file, F$.

The end of file test in line 340 to branch to the next program segment is
already set up:

340 IF EOF(1) THEN 750

While experiencing a bit of dejd vu, complete the final section to copy TEMPFIL
to the original file by filling in lines 780, 790, 810, 820, 830, and 860.

(a) 730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880

(a) 730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880

REM CLOSE FILES

CLOSE 1,2

REM INITIALIZE FILE AND COPY BACK TO ORIGINAL
tREM OPEN INPUT FILE
:REM OPEN QUTPUT FILE
:REM EOF TEST TO 860
:REM READ FROM INPUT
:REM PRINT TO OUTPUT

GOTO 810

REM CLOSE FILES

:REM CLOSE FILES (DID YOU FORGET?)

PRINT "COPY COMPLETED WITH CHANGES"

REM CLOSE FILES

CLOSE 1,2

REM INITIALIZE FILE AND COPY BACK TO ORIGINAL

QPEN "I, 1, "TEMPFIL"

GPEN "O", 2, Fs

IF EQF (1) THEN 860
INPUT #1, C$, N$, R

PRINT #2, C3; ","; N$; ","; R
GOTO 810

REM CLOSE FILES

CLOSE 1,2

PRINT "COPY COMPLETED WITH CHANGES"

160 DATA FILE PROGRAMMING IN BASIC

Yet another desirable editing feature is the ability to delete a complete dataset
from a data file. This is in addition to the program’s ability to make changes in an
existing dataset. To delete a dataset, have the program read the dataset from the
input file, but not copy it into TEMPFIL. Thus, the dataset “disappears.” This
editing option can be integrated into the existing program you have been developing.
First, enter a statement to inform the user of the option to delete a dataset.

355 PRINT "TYPE DELETE OR 'D' TO DELETE THIS DATASET"
Complete the other change (line 403) in a multiple statement line that tests for

the user input “D” and, if present, branch to line 330 never writing this dataset to the
file. Check the context (statements around 403) before writing line 403.

(a) 403

(@) 403 IF LEFTS(RS,1) = "D" THEN GOTO 330

You now have a model for a file editor that allows changes and deletions of data
in a file. Another useful editing feature allows you to insert a new dataset part way
through an existing data file to keep data in numerical or alphabetical order. After
locating a certain dataset, the new dataset is then inserted. To insert a new dataset into a
file, you can enter the new data using the subroutines used previously to make changes
in the file. How’s that for program efficiency! Following are some of the new statements
needed, with blanks for you to complete (lines 404, 535, and 537).

(a) 357 PRINT "TYPE INSERT OR "I" TO INSERT A NEW DATASET AFTER THIS

ONE."
404 :REM TEST FOR "I". IF PRESENT GOTO 532
(a routine developed next)
531 REM FILE INSERT ROUTINE
533 GOSUB 550 :REM ENTER NEW CUST, #
535 :REM ENTER NEW CUST. NAME
537 :REM ENTER NEW CREDIT RATING

539 G60OTO 510

(2) 404 IF LEFTS(R$,1) = "I" THEN 532

535 GOsSUB 620
537 GOsSUB 680

SEQUENTIAL DATA FILE UTILITY PROGRAMS 161

Our “policy” is to insert the new dataset affer the one just displayed. This means you
cannot insert data before the first dataset! This also means that you must add a line

532.

(a)

()

What will it do?

Write line 532.

532

(2)
(®

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
3585
357
360
370
380
390
400

Line 532 will copy the current dataset to the TEMPFIL.

PRINT #2, C$; ",";

NS ; n'u; R

Now gather together this data file editing utility program for the credit file. It
allows you to change, delete, insert, or add to the credit data file.

CREDIT FILE EDITOR(3)

TYPE CHANGE OR C TO CHANGE ITEM
PRESS ENTER TO CONTINUE

REM
REM

REM

REM VARIABLES USE
REM C$ = CUST
REM N$ = CUST
REM R = CREDIT
REM R$ = STRIN
REM F$ = FILE
REM FILES USED
REM INPUT FILE
REM QUTPUT FIL
REM FILE INITIAL
LINE INPUT "ENTER F
OPEN "I", 1, F$
oPEN "O", 2, "TEMPF
REM READ FILE AND
CLS

IF EOF (1) THEN 750
PRINT "TYPE CHANGE
PRINT "TYPE DELETE
PRINT "TYPE INSERT
PRINT "PRESS ENTER
INPUT #1, C$, N$, R
PRINT C$

LINE INPUT RS

IF LEFT$(R$,1) = "C

D

#(5)

NAME (20)

RATING

G VARIABLE RESPONSE
NAME

IS USER DEFINED
E = TEMPFIL

IZATION
ILE NAME:"; Fs

IL"

DISPLAY

OR 'C' TO CHANGE ITEM"

OR 'D' TO DELETE THIS DATASET"

OR 'I' TO INSERT A NEW DATASET AFTER THIS ONE"
TO CONTINUE WITH NO CHANGE"

" THEN GOSUB 550: GOTO 420
continued on next page

162

DATA FILE PROGRAMMING IN BASIC

403
404
410
420
430
440
450
460
470
480
490
500
510
520
530
531
532
533
535
537
539
540
550
560
570

580
590
600
610
620
630
640

650
660
670
680
690

700

710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880

]

IF LEFTS(RS$,1)
IF LEFTS(RS,1)

PRINT N3$
LINE INPUT RS
IF LEFT$(RS$,1)

PRINT R
LINE INPUT RS$
IF LEFTS$(R%,1)

REM PRINT TO TEMPFIL
PRINT #2, ¢%; ","; Ns; ","; R
GOTO 330

H

REM FILE INSERT ROUTINE
PRINT #2, Cs$; ","; N$; ","; R
GOSUB 550

GOSUB 620

GOSUB 680

"p" THEN GOTO 330
"I1" THEN 532

"C" THEN GOSUB 620

"c" THEN GOSUB 680

GOTO 510
REM CHANGE CUST # SUBROUTINE
LINE INPUT "ENTER NEW CUST. #:"; Cs$

IF LEN(C$) = 0 THEN PRINT "ENTER NUMBERS PLEASE": GOTO 550

IF LEN(CS$) <> 5 THEN PRINT "ENTRY ERROR. REENTER WITH 5 DIGITS":
GOTO 550

IF VAL(CS$) = 0 THEN PRINT "ENTRY ERROR. NUMBERS ONLY": GOTO 550
RETURN

REM CHANGE CUST NAME SUBROUTINE

LINE INPUT "ENTER NEW NAME:"; N3

IF LEN(N$) = 0 THEN PRINT "PLEASE, WE NEED A NEW NAME": GOTO 620
IF LEN(NS$) > 20 THEN PRINT "PLEASE REENTER NAME WITH 20 CHARS OR
LESS": GOTO 620

RETURN

REM CHANGE CREDIT RATING SUBROUTINE
LINE INPUT "ENTER NEW CREDIT RATING:"; RS

IF LEN(RS) <> 1 THEN PRINT "ONLY A ONE DIGIT NUMBER 1S ACCEPTABLE":

GOTO 680

IF VAL(RS) < 1 OR VAL(RS) > 5 THEN PRINT "NUMBERS 1-5 ONLY, PLEASE":

GOTO 680
LET R = VAL(RS)
RETURN

REM CLOSE FILES
CLOSE 1,2

REM INITIALIZE FILE AND COPY BACK TO ORIGINAL
oPEN "I1", 1, "TEMPFIL"
oPEN "O", 2, F3

IF EOF(1) THEN 860
INPUT #1, C$, N$, R
PRINT #2, C$; ","; Ns; ","; R

GOTO 810
REM CLOSE FILES
CLOSE 1,2

PRINT "COPY COMPLETED WITH CHANGES"

SEQUENTIAL DATA FILE UTILITY PROGRAMS 163

The following outline for the final version of the program allows for insertion,
deletion, or changes of data in the file.

(1) Open the input file.
(2) Open the temporary file as an output file.
(3) Check for EOF in the input file; if encountered, go to step (11).
(4) Display a “menu” for the user to select changes to be made, including a “no
changes” option.
(5) Read the entire dataset from the file and display the first data item (not data-
set) in the current dataset.
(6) Allow the user to enter a selection from the “menu” and test for the selection
possibilities.
(7) If user entered “C” for change:
(a) Allow user to enter change with data entry checks.
(b) Display next data item from data file for current dataset (if any items
remain in this dataset) and display it.
(¢) User entered option for another change and test selection.
(d) User entered change with data entry checks.
(e) Repeat (7) (b), (c), and (d) until all items in a dataset have been through
the change option.
(f) Print the dataset (with any changes) to the temporary file.
(g) Go to step (3).
(8) If user entered “I” for insert:
(a) Print the dataset to the temporary file.
(b) User enters new dataset with data entry checks.
(c) Print the newly entered data to the temporary file.
(d) Go to step (3).
(9) If user entered “D” for delete, go to step (3).
(10) If the user entered no response (just pressed the ENTER key), go to steps (7)
(b) to (g). ‘
(11) Close both files.
(12) Open the original file as an output file and the temporary file as an input file.
(13) Test for EOF for the temporary file (output) and, if found, close both files.
(14) Input a complete dataset from the temporary file and print it to the original
file.
(15) Repeat steps (13) and (14) until EOF is found and files are closed.

Write the corresponding program line number(s) for each step in the outline
below, except for items (10) and (15), where you are to fill in the blanks in the
parentheses.

(1) Open the input file.

(2) Open the temporary file as an output file.
(3) Check for EQF in the input file; if encountered, go to step (11).

164 DATA FILE PROGRAMMING IN BASIC

(4) Display a “menu” for the user to select changes to be made, including a “no

changes” option.

(5) Read the entire dataset from the file and display the first data item (not data-

set) in the current dataset.

(6) Allow the user to enter a selection from the “menu” and test for the selection

possibilities.
(7) If user entered “C” for change:

(a) Allow user to enter change with data entry checks.

(b) Display next data item from data file for current dataset (if any items

remain in this dataset) and display it.

(c) User entered option for another change and test selection.

(d) User entered change with data entry checks.

(e) Repeat (7) (b), (c), and (d) until all items in a dataset have been through

the change option.

(f) Print the dataset (with any changes) to the temporary file.
(g) Go to step (3).

(8) If user entered “I” for insert:

(a) Print the dataset to the temporary file.

(b) User enters new dataset with data entry checks.

(c) Print the newly entered data to the temporary file.

(@) Go to step (3).

(9) If user entered “D” for delete, go to step (3).

(10) Same as steps (__) () to () (). (Fill in the blanks.)
(11) Close both files.

(12) Open the original file as an output file and the temporary file as an input file.

SEQUENTIAL DATA FILE UTILITY PROGRAMS 165

(13)

(14)

(15)

Test for EOF for the temporary file (output) and, if found, close both files.

Input a complete dataset from the temporary file and print it to the original
file.
Repeat steps (___) and (__). (Fill in the blanks.)

(1)
o))
®3)
)
&)
(6)
(7

®)

©)
(10)
(11)
(12)
(13)
(14)
(15)

290

300

340

lines 350 and 360

lines 370 and 380

lines 390 to 404

(a) lines 550 to 590
(b) lines 410 and 420
(c) lines 470 and 480
(d) lines 620 to 650
(¢) lines 450, 460, and 680 to 720

H 510

(g) 520

(a) 532

(b) lines 550 to 590, 620 to 650, and 680 to 720
(c¢) 510

(d) (if program rewritten or) 520

403

steps (7) (b) to (7) ()

750

lines 780 and 790
lines 810 and 860
lines 820 and 830
steps (13) and (14)

MERGING THE CONTENTS OF FILES

In many business applications of computers, information in data files is maintained

in alphabetic or numeric order. This can be done by customer number, customer
name, product number, or some other key to filing. It is often necessary or desirable
to merge the contents of two data files, both already in some order, to a make a third
data file with the same order or sequence. A utility program to merge files also
allows you to learn some new file programming techniques with wider applications.

166 DATA FILE PROGRAMMING IN BASIC

Follow these steps to merge two data files into one.

(1) Open the two files to be merged (#1 and #2) as input files and check for EOF
in both files to be certain there is data to merge. If not, go to step (11).
(2) Open the file (#3) that will contain the merged data as an output file.
(3) Test file #1 for EOF and, if found, go to step (10).
(4) Read the first dataset from file #1.
(5) Test file #2 for EOF and, if found, go to step (10).
(6) Read the first dataset from file #2.
(7) Test datasets to see which file dataset (#1 or #2) is to be copied or printed to
the merge file (#3).
(8) Print the selected dataset to file #3; this requires two separate routines:
(2) One if file #1 dataset is selected, or
(b) Another if file #2 dataset is selected.
(9) Test for EOF and read another dataset from whichever file’s dataset was
printed to file # 3 in step (8). Again, two separate routines are needed:
(2) Test for EOF and read another dataset from file #1, or
(b) Test for EOF and read another dataset from file #2.
(10) Again, separate routines are needed to “dump” or transfer the remaining data
in file #1 or #2 to file #3:
(a) If file #1 comes to EOF first, copy the remaining datasets in file #2 to
file #3, or
(b) 1If file #2 comes to EOF first, copy the remaining datasets in file #1 to
file #3.
(11) Close all files.
(12) Optional routine to display merged data files for confirmation of a successful
merge.

The model program merges two transaction files into a third larger file that
combines the other two. In the example, each transaction produces a dataset stored
as one fourteen-character string with three fields, as shown below.

_____ Y
7 t X
Account # Transaction Amount
(five characters) code (seven characters)

(two characters)

Account number = five character field
Transaction code = two character field (for a bank, 1 = check, 2 = deposit, etc.)
Amount = seven character field

Assume that the datasets are stored in two data files each in ascending numerical
order by account number (problem 3 in the Chapter 4 Self-Test). The goal is to
produce a third file that combines the data in the first two files, but maintains the
numerical order when the file merging is complete. Also assume that more than one
dataset can have the same account number in either or both data files.

This last assumption requires a decision. When merging, if two datasets have

SEQUENTIAL DATA FILE UTILITY PROGRAMS 167

the same account number, the program will copy the dataset from file #1 first, then
the dataset with the same number from file #2.

FILE #1 FILE #2
10762 10761
18102 18203
43611 43611
43611 80111
43611 BO772
80223 80772
98702 89012

File #3 (files #1 and #2 merged into one)

10761
10762
18102
18203
43611
43611
43611
43611
80111
80223
80772
o772
89102
98702

(Note: Only the account numbers are shown here; the complete datasets also include
transaction codes and amounts.)

This program is called MERGE. It gets tricky, so read the text and program
segments carefully. The initializing process is familiar.

100 REM FILE MERGE APPLICATION

110 .
120 REM VARIABLES USED

130 REM Fi1$, F2%, F3% = FILE NAMES
140 REM D1%$, D2% = DATASETS FROM FILE 1,2
150 REM D1, D2 = ACCOUNT NUMBERS

160 REM R$ = STRING VARIABLE ENTRY
170 REM FILES USED

180 REM TWO INPUT FILES = USER ENTERED
190 REM QUTPUT FILE = USER ENTERED
200 :

210 REM FILE INITIALIZATION

220 LINE INPUT "ENTER INPUT FILE #1:"; F1$%
230 LINE INPUT "ENTER INPUT FILE #2:"; F2s%
240 LINE INPUT "ENTER OUTPUT FILE:"; F3s%
250

260 DPEN "I", 1, F1$
270 OPEN "I", 2, F2%
280 OPEN "O", 3, F3%
290

168 DATA FILE PROGRAMMING IN BASIC

For program readability, file F1$ uses buffer #1, file F2$ uses buffer #2, etc.

Next, the first dataset is read from file #1. Notice that an EOF test is made
before the first dataset is read, just in case the file has no data. (We added line 315
just in case both files are empty. At 900 an error message appears.)

300

310 REM READ #1

315 IF EOF(1) AND EOF(2) THEN 900

320 IF EOF(1) THEN INPUT #2,D2%: GOTO 610
330 INPUT #1, D1$%

If file #1 is empty to begin with, we read one item from file #2 and GOTO 610.

Line 340 converts the part of the dataset field string that contains the account
number into a numeric value.

340 LET D1 = VAL(LEFTS$(D1%,5))

You write the next segment. The program should check for EOF (and branch to
line 670 if the test is true), read the first data item from file #2, and convert the
account number part of the dataset string into a numeric value.

() 360 REM READ #2
370
380
390
400 REM

(a) 350 :
360 REM READ #2
370 IF EDF(2) THEN 670
380 INPUT #2, D2%
390 LET D2 = VAL(LEFT$(D2%,5))
400 3

The next decision is which dataset, that from file #1 or from file #2, will be
copied into file #3 first?

400 =

410 REM MERGE TESTING
420 IF D1 = D2 THEN 470
430 IF D1 < D2 THEN 470
440 GOTO 540

450

SEQUENTIAL DATA FILE UTILITY PROGRAMS

169

(@

(b)

©

The program

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450

so far:

REM FILE MERGE APPLICATION

REM VARIABLES USED

REM F1$, F2%, F3% = FILE NAMES
REM D1$, D2% = DATASETS FROM FILE 1,2
REM D1, D2 = ACCOUNT NUMBERS

REM R$ = STRING VARIABLE ENTRY
REM FILES USED

REM TWO INPUT FILES = USER ENTERED
REM QUTPUT FILE = USER ENTERED
REM FILE INITIALIZATION

LINE INPUT "ENTER INPUT FILE #1:"; F1s
LINE INPUT "ENTER INPUT FILE #2:"; F2s
LINE INPUT "ENTER OQUTPUT FILE:"; F3s
OPEN "I", 1, F1%

OPEN "I", 2, F2s

OPEN "O", 3, F3%

REM READ #1

IF EOQOF(1) THEN 610

INPUT #1, D1s

LET D1 = VAL(LEFT$(D1%,5))
REM READ #2

IF EOF(2) THEN 670

INPUT #2, D23

LET D2 = VAL(LEFTS$(D2%,5))

REM MERGE TESTING
IF D1 = D2 THEN 470
IF D1 < D2 THEN 470
GOTO 540

What should happen in the program routine that starts at line 4707

The program tests for equality in line 420. In line 430, the test was for D1 less

than D2. If both tests are false, then what is the relationship of D1 to D2?

What should happen in the program routine at line 540 that line 440 branches

to?

170 DATA FILE PROGRAMMING IN BASIC

(a) Copy the contents of D1$ to file #3.
(b) D1 is greater than D2.
(c) Print the contents of D2§ into file #3.

Continue with the file copying segment for copying a dataset from file #1 to
file #3.

450 REM
460 REM COPY FROM #1 TO #3
470 PRINT #3, DI1s

(a) After executing the above segment, the program should now read another dataset
from file #1. You might want to have the program branch back to the routine
at line 310 and continue executing from there. Why would this result in a
program error?

(a) The routine at 310 reads from file #1, but then goes right on to read another
dataset from file #2, replacing the dataset already assigned to D2$ without it
having been copied to file #3.

Another program segment is used for reading the next data item from file #1.

480 IF EOF(1) THEN 610

490 INPUT #1, D1%

500 LET D1 = VAL(LEFTS$(D1%,5))
510 GOTO 420

(2) When the program finds the end of file #1, it branches to line 610. Think ahead.
What should happen in the routine at line 610?

SEQUENTIAL DATA FILE UTILITY PROGRAMS 171

(a) Since all datasets have been read from file #1 and copied to file #3, all the re-
maining data in file #2 should be copied into file #3. You’ll see this routine
soormn.

Here is the routine we need to copy a dataset from file #2 to file #3.

520

530 REM PRINT #2 TO #3

540 PRINT #3, D2%

550 IF EOF(2) THEN 670

560 INPUT #2, D23

570 LET D2 = VAL(LEFT$(D2%,5))
580 GOTO 420

590

Notice how carefully you must think through these file utility programs. You are
nearing the end with a few more “clean-up” routines needed. Two similar routines
are needed to copy or dump the remainders of file #2 to #3, and #1 to #3.

600 REM DUMP #2 TO #3
610 — — — — e

(a) The routine begun just above is branched to from line 480, where the program
had just finished copying a file #1 dataset into #3. The EOF for file #1 is
detected, showing that all data in that file has now been copied to file #3 and
the program has branched to line 610. Since a dataset has been assigned to D28,
what must happen at line 6107

(a) Copy the contents of D2$ to file #3.

The rest is easy. Check file #2 for the EOF marker and dump any remaining
datasets into file #3.

590

600 REM DUMP %2 TO #3
610 PRINT #3, D2%

620 IF EOF(2) THEN 730
630 INPUT #2, D2%

640 GOTO 610

650

172 DATA FILE PROGRAMMING IN BASIC

(a)

(®)

Write the corresponding routine to dump file #1 to file #3. The EOF check
statement should branch to line 730.

650 REM
660 REM DUMP #1 TO %3

670
680
690
700

710 REM

The EOF test statements in lines 620 and 680 branch to line 730. What final
routine should appear there?

(b)

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280

650
660
670
680
690
700
710

REM DUMP #1 TO #3
PRINT #3, D1%

IF EQF(1) THEN 730
INPUT #1, D13

GOTO 670

Close all files, since all data has been copied and merged.

Once the files are closed, the program gives the user the option to display the
contents of the merged files to verify that it did happen and to judge whether the
program works properly. In MERGE all the activity takes place between the computer
memory and the disk with no evidence of the action appearing on the CRT screen. You
see only RUN and READY, so did it really happen? The routine included at the end
of the complete listing of MERGE lets you be sure (see 760 through 870).

REM
REM
REM
REM
REM
REM
REM
REM
REM

REM

FILE MERGE APPLICATION

VARIABLES USED
Fl1s, F2%, F3% = FILE NAMES
D1$, D2% = DATASETS FROM FILE 1,2
D1, D2 = ACCOUNT NUMBERS
R$% = STRING VARIABLE ENTRY

FILES USED
TWO INPUT FILES = USER ENTERED
OUTPUT FILE = USER ENTERED

FILE INITIALIZATION

LINE INPUT "ENTER INPUT FILE #1:"; F1%
LINE INPUT "ENTER INPUT FILE #2:"; F2%
LINE INPUT "ENTER OUTPUT FILE:"; F33

OPEN "I", 1, F1s
OPEN "IV, 2, F2s%
OPEN "g", 3, F3%

SEQUENTIAL DATA FILE UTILITY PROGRAMS

173

290
300
310
315
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760

770
780
790
800
810
820
830
840
850
860
870
880

REM READ #1

IF EOF(1) AND EOF(2) THEN 900

IF EOQOF (1) THEN INPUT #2; D2%: GOTO 610
INPUT #1, D1%

LET D1 = VAL(LEFTS$(D1%,5))

REM READ #2

IF EOQOF(2) THEN 670

INPUT #2, D23

LET D2 = VAL(LEFTS$(D2%,5))

REM MERGE TESTING
IF D1 = D2 THEN 470
IF D1 < D2 THEN 470
GOTO 540

REM PRINT #1 TO #3
PRINT #3, D1%

IF EOQF(1) THEN 610

INPUT #1, D13

LET D1 = VAL(LEFTS(D1%,5))
GOTO 420

REM PRINT #2 TO #3
PRINT #3, D2%

IF EOF(2) THEN 670

INPUT #2, D2$%

LET D2 = VAL(LEFTS$(D2%,5))
GOTO 420

REM DUMP #2 TO #3
PRINT #3, D2%

IF EOF(2) THEN 730
INPUT w2, D2%

GOTO 610

REM DUMP #1 TO #3
PRINT #3, D1$

IF EOF(1) THEN 730
INPUT #1, D1s%

GOTO 670

REM CLOSE FILES

CLOSE 1, 2, 3

PRINT "MERGE COMPLETED"

PRINT:PRINT

LINE INPUT "WOULD YOU LIKE TO SEE THE MERGED FILE?"; RS

IF LEFT$(R$,1) = "N" THEN 870
REM PRINT CONTENTS OF MERGED FILE
oPeEN "I", 1, F3s%

IF EOF(1) THEN 860
INPUT #1, D1%
PRINT D1%

GOTO 810

REM CLOSE FILE
CLOSE 1

sTOP

:

continued on next page

174 DATA FILE PROGRAMMING IN BASIC

890 REM EOF ERROR MESSAGES .
900 PRINT "BOTH FILES ARE EMPTY AT THE BEGINNING OF THE MERGE
910 =

920 END

Write the corresponding program line number(s) for each step of the following

outline:

)

2
3)
(4)
)
©)
(7

®

®

(10)

(11)

Open the two files to be merged (#1 and #2) as input files and check for EOF
in both files to be certain there is data to merge. If not, go to step (11).

Open the file (#3) that will contain the merged data as an output file.

Test file #1 for EOF and, if found, go to step (10).

Read the first dataset from file #1.

Test file #2 for EOF and, if found, go to step (10).

Read the first dataset from file #2.

Test datasets to see which file dataset (#1 or #2) is to be copied or printed to

the merge file (#3).
Print the selected dataset to file #3; this requires two separate routines:

(a) One if file #1 dataset is selected, or
(b) Another if file #2 dataset is selected.

Test for EOF and read another dataset from whichever file’s dataset was printed
in file #3 in step (8). Again, two separate routines are needed:

(a) Test for EOF and read another dataset from file #1,

or

(b) Test for EOF and read another dataset from file #2.

Again, separate routines are needed to “dump” or transfer the remaining data
in file #1 or #2 to file #3:

(a) If file #1 comes to EOF first, copy the remaining datasets in file #2 to

file #3, ' or
(b) 1If file #2 comes to EOF first, copy the remaining datasets in file #1 to
file #3.

Close all files.

SEQUENTIAL DATA FILE UTILITY PROGRAMS 175

(12) Optional routine to display merged data files for confirmation of a successful

merge.
(1) lines 260 and 270 (9) (a) lines 480 and 490
(2) 280 (b) lines 680 and 690
(3) 320 (10) (2) lines 610 to 640
4 330 (b) lines 670 to 700
(5) 370 (11) 730
(6) 380 (12) lines 760 to 860
(7) lines 420 and 430
(8 (a) 470

(b) 670

PROBLEMS WITH SEQUENTIAL DATA FILES

You should be aware of some frequent errors made in using sequential files and some
programming techniques used for successful programs accessing data files.

The most frequent programming error is failing to keep track of the file pointers.
In TRS-80 BASIC and BASIC-80, where the computer distinguishes between input
and output files at the time the file is opened, the problem is usually greater with
input files. Each time you use an INPUT # statement in a program, ask yourself
how the file pointer is affected and where it is located before and after executing
the statement.

(a) How can you reset the datafile pointer to the beginning of a file?

(a) Close the file. Pointer is at beginning of file when file is reopened.

Another frequent error occurs when a program sequentially searches through a
data file for a particular dataset or data item. Let’s say you have a data file of names
arranged alphabetically by last names. After you enter the name to be searched, the
program searches through the file until it finds the name and then prints the informa-
tion on your printer for that person. Then you enter a second name. When writing
the program, ask yourself where the file pointer will be located after the first search.

176 DATA FILE PROGRAMMING IN BASIC

Assume the first name searched and located is DORIAN SCHMIDT and the second
name is HAMILTON ANDERSON. The data file search for the second name takes up
where the search for the first name left off. The second name obviously will not be
found before you reach the end-of-file. If the data file pointer was not reset to the
beginning of the file after the first search, ANDERSON will never be found because
the file was in alphabetical order and the search for the second name started at
SCHMIDT. The solution, of course, is to make sure the program resets the pointer

to the beginning of the file after every search, by using a CLOSE followed by an
OPEN statement.

(2) When a file has been partially read through during a data search, why must the
file pointer be reset to the beginning of the file before a new search of the file
commences?

(a) Because if the pointer is midway in the file and the new datum searched for is
near the beginning of the file, the search would not find the datum.

Another program situation to watch out for is a file application program con-
taining routines that sequence through a data file using one INPUT # statement in
a program loop. Think through this situation carefully when writing a program.
Go through the loop in your mind or on paper two or three times before running
the program to make certain the program will perform as expected. You may find
(as we did in the MERGE program) that the first INPUT # statement cannot be
part of a file reading loop without data being lost. Your program may need two
different INPUT # statements, in separate routines. One may read only the first
dataset or data item, while the other reads the rest of the file, or as far as necessary,
in a program loop routine. This is common.

(2) How could data be lost when all data file inputs are included in data file reading

loops?

(a) In cases where one file or the other is empty to begin with.

SEQUENTIAL DATA FILE UTILITY PROGRAMS 177

Errors also occur when the contents of arrays are copied into a data file, a topic
not tovered earlier. The contents of a one- or two-dimensional array can be copied
into a file or read from a file back into an array, provided you use the correct pro-
gramming techniques. Such data manipulation has many uses. There is a tendency
to think of array data as something that is used up or consumed, but storing array
data in a file gives it permanence.

To load array data into a data file from a one-dimensional array:

P (1) |1761
The wrong way:
) 18
3) | 1942 PRINT #1, P
4 24 The correct procedure:
(5) | 8209 FOR X = 1 TO 6
PRINT #1, P(X)
(6) 2 NEXT X

The correct procedure could also be done as one multiple statement line. Using this
format PRINT #1, P(X); (note the semicolon) could possibly save a little file space.
Similarly, to load array data into a data file from a two-dimensional array:

c (L) (12 (13) The wrong way:
PRINT #1, C

(2,1) N M S

(3,1) G H T The correct procedure:

4,1) B D E FOR X = 1 TO 4

’ FOR Y = 1 TO 3

PRINT %1, C(X,Y)
NEXT Y
NEXT X

(a) To read data into (or out of) an array from (or to) a data file, what programming

technique is used?

(2) FOR NEXT loop

Another useful technique deals with applications where data are to be added to
a file. Let’s say a client number needs to be assigned to a new client or customer as
part of a new dataset. In a business environment, the new client number might be

178 DATA FILE PROGRAMMING IN BASIC

assigned by data preparation personnel or the data entry person, relying on a list or on
their knowledge of what number was last used. However, if you let the computer do
it you can avoid “human error” commonly mislabeled “‘computer error.” In the data
file and after any copy made for modification of the file, reserve the very first file
data position for the next available client number. Then when new clients are added
to the file, follow these steps.

1. Read the first data item (next available client number) = N.

2. Assign N to the next client.

3. Increment N by 1 (or perhaps by +2 or +5 or +10 to leave room for future client
data to be squeezed in) = N1.

Then have the program place N1 as the first item in the temporary file.

Copy the rest of the old file to the temporary file.

Place the new client data in the temporary file.

Copy the temporary file (including N1) back to the old file.

Repeat from step 1 for each new client.

A

Using the first part of a data file to hold information needed by the program,
followed by the regular data, is a broadly useful technique. For example, the contents
of an array could be placed at the head or beginning of a file, followed by the main
datasets that make up the file. This procedure prevents using a separate data file for
array data that are a part of the file. Just don’t forget how the data file is set up, or
some rather horrific file input errors could ensue. Such information should be in-
cluded in the documentation prepared for each program and its corresponding data
files.

A LETTER-WRITING PROGRAM

The next sequential file application example is a letter-writing program you may find
useful in your home or business. This application presents some new techniques and
reviews others.

Assume that you did the Chapter 4 Self-Test and have three form letters stored
in data files called LETTER1, LETTER2, and LETTER3. When these letters are
printed, you want the program to put the inside address and salutation in the letter
from data located in yet another sequential data file called ADDRESS. The file
ADDRESS contains the names and addresses in the mailing list. The data have the
format shown below, with each dataset containing five items in fields within one string.

55
/1 20/21 40/41 50/12/53 57/
name address city state zip code

The salutation for each letter will be:

Dear resident of (name of city)

SEQUENTIAL DATA FILE UTILITY PROGRAMS 179

To print the letters on your line printer, use the LPRINT statement.

The program uses the CRT screen to enter which form letter (1, 2, or 3) you
want to send to each name on the mailing list. This program, then, uses four -data
files (only two data files at a time), a line printer, and a CRT screen. If you don’t
have a line printer, the program is easily adapted to have all the program output
displayed on a CRT screen. Some interesting techniques can be learned from this
example.

Follow these steps for this particular program.

(1) Open the address data file as an input file.
(2) Check for EOF of address file and, if found, close all files and end the program.
(3) Input the address dataset and display the name.
(4) User entry option to select the form letter to this address with data entry checks.
(5) Open selected form letter file as an input file.
(6) Print inside heading address.
(7) Print salutation with addressee’s last name.
(8) Test letter file for EOF and, if found,
(a) close that form letter file, and
(b) repeat from step (2).
(9) Input a dataset (one line of text from the letter file) and print it.
(10) Repeat steps (8) and (9).

Look at the introductory module of the program. The ADDRESS file is opened
and, as indicated in the line 240 remark, the LETTER files are user selected and
opened when selected.

100 REM LETTER WRITING PROGRAM

110

120 REM VARIABLES USED

130 REM N$ = NAME, ADDRESS, ETC

140 REM R$ = RESPONSE STRING

150 REM R$ = LETTER READ STRING

160 REM F$ = LETTER FILE NAME

170 REM FILES USED

180 REM INPUT FILE = ADDRESS

190 REM INPUT FILES = LETTER1, LETTERZ2, LETTERS3

200 CLEAR 1000
210 REM FILE INITIALIZATION

220 OPEN "IM™, 1, "ADDRESS"

230

240 REM OTHER INPUT FILE IS USER SELECTED AND OPENED AT THAT TIME
250

260 REM READ NAME, ADDRESS
270 IF EOF (1) THEN 620

280 INPUT #1, N$

290

The program assigns the first name and address dataset string to variable N$ in
line 280. Notice that the program tests for the EOF marker before the first datum
is read from the file. Always include this test before a file input statement.

180 DATA FILE PROGRAMMING IN BASIC

Now it’s your turn. Have the program display the party’s name on the CRT,
and then ask the user to select the letter to be printed to this party. Fill in lines
320, 330, and 340.

a) 290 =
(300 REM DISPLAY NAME/ LETTER REQUEST
310 CLS
320 :REM PRINT NAME,
LINE FEED
330 tREM ASK FDR LETTER
#{R3%)
340 :REM TEST IF RS IS
1,2, OR 3
350
(a) 290:
300 REM DISPLAY NAME/ [LETTER REQUEST
310 CLS
320 PRINT LEFT$(N$,20): PRINT
330 LINE INPUT "WHICH LETTER?"; RS
340 IF VAL(RS) < 1 OR VAL(RS$) > 3 THEN PRINT "ERROR. LETTERS

ONLY": GOTO 330
350

Examine the following routine for creating the name of an existing data file.

350

360 REM INITIALIZE LETTER FILE
370 LET Fs = "LETTER"+ RS

380 OPEN "I", 2, Fs

390

(a) If the user enters 2, in response to “WHICH LETTER?”, what file name is
created and assigned to F$?

(a) LETTER?2 (note the string concatenation in line 370).

Write the inside address printing statements (to be printed by the line printer).
Fill in lines 410, 420, 430, and 440.

SEQUENTIAL DATA FILE UTILITY PROGRAMS 181

(a) 390 :

400 REM PRINT INSIDE ADDRESS

410 :REM LINE FEED 3 TIMES

USING CHRS(138)

420

430 :REM PRINT NAME

440 :REM ADDRESS

450 tREM CITY, STATE, ZIP
(a) 390:

400 REM PRINT INSIDE ADDRESS

410 PRINT CHR$(138): LPRINT CHR3(138): LPRINT CHR$(138)
420 LPRINT LEFT$(N$,20)

430 LPRINT MID$(N$,21,20)

440 LPRINT MID$(N$,41,10), MID$(N$,5%,2), RIGHTS(NS$,5)

450

This next routine prints the salutation. Notice how the city name is extracted
from N§ in line 480.

450

460 REM PRINT SALUTATION

470 LPRINT CHR$(138): LPRINT CHR$(138)

480 LPRINT "DEAR RESIDENT OF"; MID$(N$,41,10)
490

(a) For practice, write a BASIC statement that would print this alternate salutation:
HELLO THERE ALL YOU FOLKS AT (street address)

() LPRINT “HELLO THERE ALL YOU FOLKS AT”; MID$(N$,21,20)

The next routine to print the text of the letter is fairly straightforward. The
data input loop continues until that file data are exhausted. Assume that all line feeds
and carriage returns are included with the text in the data file.

490
500 REM PRINT LETTER TEXT
510 REM WHICH INCLUDES TOP OF FORM CODES

520 IF EOF(2) THEN 580
530 LINE INPUT #2, R$
540 LPRINT R$

550 GOTO 520

continued on next page

182 DATA FILE PROGRAMMING IN BASIC

560 :

570 REM CLOSE LETTER FILE AND RETURN FOR NEXT ADDRESS

580 CLOSE 2

550 GOTO 270

600 :

(a) Give two reasons for closing the letter file in line 580.

(b) Why use LINE INPUT #2 in line 530 instead of just INPUT?

(c) Without checking back, what happens in line 270, which is branched to from
line 590 GOTO 2707

(a) Resets the pointer so that the letter can be used again, and only one OPEN
statement is needed for all letter files.

(b) LINE INPUT permits entering data that includes commas and quotation marks,
as might be included in the text of a letter. (MICROSOFT BASIC)

(c) EOF tests and next name and address data set is read.

And now, you write the last routine necessary to properly complete this

program by completing line 620.

()

610 REM
620
630 PRINT “JOB COMPLETED”

SEQUENTIAL DATA FILE UTILITY PROGRAMS 183

(a) 600 :
610 REM CLOSE ADDRESS FILE
620 CLOSE 1
630 PRINT "JOB COMPLETED"
640

Following is a complete listing of the letter-writing program.

100 REM LETTER WRITING PROGRAM
110

120 REM VARIABLES USED

130 REM N$ = NAME, ADDRESS, ETC

140 REM R$ = RESPONSE STRING

150 REM R$ = LETTER READ STRING

160 REM F$ = LETTER FILE NAME

170 REM FILES USED

180 REM INPUT FILE = ADDRESS

190 REM INPUT FILES = LETTER1, LETTER2, LETTER3

200 CLEAR 1000

210 REM FILE INITIALIZATION

220 OPEN "1", 1, "ADDRESS"

230 :

240 REM OTHER INPUT FILE IS USER SELECTED AND OPENED AT THAT TIME
250

260 REM READ NAME, ADDRESS

270 IF EQF (1) THEN 620
280 INPUT #1, N$

290

300 REM DISPLAY NAME/LETTER REQUEST
310 CLS

320 PRINT LEFTS$(N$,20): PRINT

330 LINE INPUT "WHICH LETTER?"; RS

340 IF VAL(R3) < 1 DR VAL(RS$) > 3 THEN PRINT "ERROR. LETTERS 1-3 ONLY":

GOTO 330
350 :

360 REM INITIALIZE LETTER FILE
370 LET F$ = "LETTER" + RS

380 OPEN "1", 2, Fs3

390 :

400 REM PRINT INSIDE ADDRESS

410 LPRINT CHR$(138): LPRINT CHR$(138): LPRINT CHR$(138)
420 LPRINT LEFT$(N$%$,20)

430 LPRINT MIDS$(N$,21,20)

440 LPRINT MID$(N$,41,10), MID$(N$,51,2), RIGHT$(NS$,5)
450

460 REM PRINT SALUTATION

470 LPRINT CHR$(138): LPRINT CHR$(138)

480 LPRINT "DEAR RESIDENT OF"; MID$(N$,41,10)

490
500 REM PRINT LETTER NEXT
510 REM WHICH INCLUDES TOP OF FUORM CODES

520 IF EOF(2) THEN 580

530 LINE INPUT #2, RS$

540 LPRINT Rs$

550 GOTO 520

560 1

570 REM CLOSE LETTER FILE AND RETURN FOR NEXT ADDRESS
580 CLOSE 2

590 GOTO 270

continued on next page

184 DATA FILE PROGRAMMING IN BASIC

600
610 REM CLOSE ADDRESS FILE
620 CLOSE 1

630 PRINT "JOB COMPLETED"

640

CHAPTER 5 SELF-TEST

1. Write a program to make a copy of the ADDRESS file that you created in the
Chapter 4 Self-Test problem (5).

SEQUENTIAL DATA FILE UTILITY PROGRAMS 185

2a. Write a program to create a sequential data file whose data items are the titles
of computer magazines. Use the files shown below, and enter the items in each

file in alphabetical order.

File One:

BYTE Magazine

Compute

Dr. Dobbs Journal
Kilobaud Microcomputing
Recreational computing

File Two:

Creative Computing
DATAMATION
Interface Age

ON Computing
Personal Computing

186 DATA FILE PROGRAMMING IN BASIC

2b. Write a program to merge into one alphabetically organized sequential data file,

two data files whose data items are the titles of computer magazines. The data in

the two files are already in alphabetical order and contain the following two sets
of data:

SEQUENTIAL DATA FILE UTILITY PROGRAMS 187

188 DATA FILE PROGRAMMING IN BASIC

3. Write a program that allows you to enter into a data file a list of household
maintenance tasks to be done and allows you to add to or delete from the data
file.

SEQUENTIAL DATA FILE UTILITY PROGRAMS 189

190 DATA FILE PROGRAMMING IN BASIC

Answer Key

1. 100 REM PROB 5-1

110

120 REM VARIABLES USED

130 REM N$(20) = NAME

140 REM A$(20) = ADDRESS

150 REM C$(10) = CITY

160 REM S$(2) = STATE

170 REM Z$(5) = ZIP CODE

180 REM D$(57) = ENTIRE DATASET

190 REM F$ = COPY FILE

200 ¢

210 REM FILES USED = ADDRESS

220 REM COPY FILE = USER DEFINED

230

240 REM INITIALIZE

250 LINE INPUT "ENTER NAME OF COPY FILE"; Fs3

260 OPEN "I", 1, "ADDRESS"

270 OPEN "O", 2, F$

280

290 REM READ/COPY FILE

300 IF EOF(1) THEN 360
310 INPUT #1, D3

320 PRINT #2, D$

330 GOTO 300

340
350 REM CLOSE FILE
360 CLOSE
370 =
2a.
100 REM PROBS—2A SOLUTION
110 :
120 REM VARIABLES USED
130 REM F$ = FILE NAME
140 REM M$ = DATA (MAGAZINE)
150 REM R$ = USER RESPONSE
160 :
170 REM FILES USED
180 REM USER DEFINED SEQ. QUTPUT FILE
180
200 REM INITIALIZATION
210 CLEAR 500
220 LINE INPUT "ENTER FILE NAME:"; Fs
230 OPEN "O", 1, Fs
240
250 REM DATA ENTRY
260 PRINT "IF NO MORE MAGAZINES TO ENTER, TYPE 'STOP'."
270 LINE INPUT "MAGAZINE NAME?"; M$
280 IF M3 = "STOP" THEN 360
290 IF ASC(MS$) = O THEN PRINT "PLEASE ENTER MAGAZINE NAME.":
300 IF LEN(MS3) < 40 THEN LET M$ = Ms + " " : GOTO 300
310 REM OTHER DATA ENTRY TESTS WOULD GO HERE
320 PRINT #1, M3
330 CLS
340 GOTO 260
350 REM CLOSE FILE
360 CLOSE
370 PRINT "FILE CLOSED"

380

GOTO 260

SEQUENTIAL DATA FILE UTILITY PROGRAMS 191

2b.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
. 320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510:
520
530

540
550

560
570
580
590
600
605
610
620
630
640
650
660
670
680

REM PROBS—2B

REM VARIABLES USED

REM F1%$,F2%,F3% = FILE NAMES

REM D1$,D2% = DATA FROM FILES 1,2

REM R$ = USER RESPONSE

REM FILES USED

REM TWO SEQ. INPUT FILES, USER DEFINED
REM SEQ OUTPUT FILE, USER DEFINED

REM INITIALIZATION

CLEAR 500

LINE INPUT "ENTER NAME OF INPUT FILE #1:"; F1$%
LINE INPUT "ENTER NAME OF INPUT FILE #2:"; F2%
LINE INPUT "ENTER NAME OF QUTPUT FILE:"; F3%
oPEN "1", 1, F1s

agPeN "1", 2, F23

opeN "o", 3, F3s

PRINT "WORKING = - ~ MERGE IN PROGRESS"

REM READ FILE 1

IF EOF(1) THEN 590

INPUT #1, D1%

REM READ FILE 2

IF EOF(2) THEN 640

INPUT #2, D23

REM MERGE TESTING

LET K = 1

IF ASC(MID$(D1$,K,1)) < ASC(MID$(D2%,K,1)) THEN 470
IF ASC(MID$(D1$,K,1)) = ASC(MID$(D2%,K,1)) THEN K = K + 1: GOTO
GOTO 530

REM PRINT FILE 1 TO 3

PRINT #3, D1$

IF EOF(1) THEN 590

INPUT #1, DI1%

GOTO 410

REM PRINT FILE 2 TO 3

PRINT #3, D2%

IF EOF(2) THEN 640

INPUT #2, D2%

GOTQ 410

REM DUMP FILE 2 TO 3

PRINT #3, D2%

IF EOF(2) THEN 700

INPUT #2, D2$

GOTD 590

REM DUMP FILE 1 TO 3

PRINT #3, D1%

IF EOF(1) THEN 700

INPUT #1, D1$

GOTO 640

continued on next page

420

192 DATA FILE PROGRAMMING IN BASIC

690 REM CLOSE FILES
700 CLOSE 1,2,3
710 CLS

720 PRINT " MERGE COMPLETED"
730 PRINT: PRINT
740 LINE INPUT "WOULD YOU LIKE TO SEE THE MERGED FILE?"; R$

750 IF LEFT$(R$,1) = "N" THEN 850

760

770 REM DISPLAY CONTENTS OF MERGED FILE
780 oPeEN "I", 1, F3s

790 IF EOF(1) THEN 840
800 INPUT %1, D18

810 PRINT D13

820 GOTO 790

830 REM CLOSE FILE

840 CLOSE

850 END

3.

100 REM PROB 5-3 SOLUTION

110

120 REM VARIABLES USED

130 REM F$ = FILE NAME

140 REM R$,C$ = RESPONSE STRING
150 REM M$ = TASK

160 REM INITIALIZE

170 LINE INPUT "ENTER FILE NAME:"; Fs$

180 OPEN "I", 1, F$

190 OPEN "O", 2, "TEMPFIL"

200

210 LINE INPUT "DO YOU WISH TO ADD OR DELETE FROM THE FILE (A/D):"; RS
220 IF R$ <> "A" AND R$ <> "D" THEN PRINT "ENTRY ERROR. REENTER":GOTO 210
230 IF R$ = "A" THEN 390

240 :

250 REM DELETE ROUTINE

260 PRINT "AS THE FILE DATA APPEARS ON THE SCREEN"

270 PRINT "PRESS ENTER TO ACCEPT, TYPE D 7O DELETE"

280

290 IF EOF(1) THEN 500

300 INPUT #1, M$

310 PRINT M$

320 LINE INPUT "PRESS ENTER OR D:"; C$
330 IF LEN(CS$) = 0 THEN 290
340 :

350 PRINT #2, M$

360 GOTO 290

370

380 REM ADD TO FILE ROUTINE
390 IF EOF(1) THEN 440

400 INPUT #1, MS

410 PRINT #2, M$

420 GOTO 390

430
440 LINE INPUT "ENTER NEW TASK OR STOP:"; M$
450 IF Ms = "STOP" THEN 500

460 PRINT #2, M$

470 GOTO 440

480

490 REM COPY TEMPFIL TO FILE
500 CLOSE 1,2

510 :

SEQUENTIAL DATA FILE UTILITY PROGRAMS

193

520
530
540
550
560
570
580
590
600
610

OPEN "IN,
oPEN "Q",

IF EOF(1)
INPUT #1,
PRINT #2,
GOTO 550

CLOSE 1,2
END

1, "TEMPFIL"
2, F$

THEN 600
M3
M3

194 DATA FILE PROGRAMMING IN BASIC

CHAPTER SIX

Cassette Tape Data Files

Objectives: In this chapter, you will learn to use those sequential disk data file
techniques and statements that apply to sequential cassetfe data files and to write
programs for creating and using cassette data files.

INTRODUCTION

Now that you can use sequential data files, let’s extend this understanding to saving
data files on cassette tapes rather than magnetic disks. Radio Shack TRS-80 users
will find this chapter tailored especially for them.

If you want to apply your knowledge of data files to cassette files and have the
computer system to do so, this chapter teaches you to manipulate data files on
cassettes. This is a different operation than saving BASIC programs onto a cassette
(using CSAVE) or loading programs from cassettes (using CLOAD). This discussion
is on sequential data files; the same kind you learned fo use in Chapters 4 and 5.

Before getting into the subject, however, we offer our editorial opinion on
cassette data files. If you are planning to do a lot of serious programming using
data files, then buy a disk drive at your earliest convenience. Cassette data files are
not only difficult to work with, but are also limited in the scope of things you can
do with them. They are sensitive to sound, interference, tape quality, dirt, recorder
operation errors, and a host of other factors difficult to control. Cassette tape files
are neither fun nor easy to work with, especially after using a computer system with
disks. In contrast to disks, cassettes are notoriously slow. At the very least, we
recommend using a dual recorder system to increase the capabilities available to you
as a user of cassette data files.

In spite of the horror stories of erased tapes, tape reading errors, writing and

195

196 DATA FILE PROGRAMMING IN BASIC

recording errors, and the like, if you are calm, methodical, and cautious, you can
successfully use cassette data files. And practice, of course, helps.

A good way to eliminate some potential problems is to always use high quality
cassette tapes made specifically for computer use, rather than trying to get by with
inexpensive audio recording tapes. Cassettes made for computer use come without a
blank leader at either end. The leader material found in audio recording tapes is
not magnetically coated like the rest of the tape and, therefore, will not record data.
When the cassette is read, the first part of the data simply will not be there. Using
cassettes made for computer applications will eliminate aggrevation and errors caused
by your system trying to record data on the ieader. So leaderiess tape is highly
recommended.

In your programs to read from or write to cassettes, include messages giving
instructions on the recorder’s physical operation. While software and recorders that
give more program control over cassette operation are becoming available, you may
find that a certain amount of button pushing is inevitable. Avoid errors by having
reminder messages at appropriate places, such as in the following excerpt from a
program RUN.

LOAD EMPTY CASSETTE TAPE
PRESS RECORD/PLAY BUTTONS
PRESS ENTER KEY TO CONTINUE

.

STOP CASSETTE

REWIND TO BEGINNING OF TAPE
PRESS PLAY BUTTON

PRESS ENTER KEY TO CONTINUE

PRINTING TO AND READING FROM A CASSETTE
TAPE DATA FILE

The set of BASIC instructions used with cassette tape files is much like that of disk
files, only easier! The file number (after #) for a cassette recording device is a nega-
tive number (-1); for a second recorder the number is -2. Therefore, the file input
statement has the following format:

180 INPUT #-1, A, B$%, (3%

Similarly, the format for the file print statement includes that same negative
number to indicate “cassette” to the computer.

200 PRINT #-1, A, B$, C$
Easy! Note that in the PRINT #-1 statement, you do not have to force com-

mas between the string variables with quotation marks, as was necessary in the
version of MICROSOFT BASIC for disks used in the previous chapters. Also cassette

CASSETTE TAPE DATA FILES 197

files do not need OPEN or CLOSE statements since no directory of data files exists
on a cassette for the computer to refer to, and the rest is taken care of by turning
the recorder on and off. Furthermore, there is no buffer to worry about. The
cassette INPUT # and PRINT # statements operate directly with the cassette re-
corder with no buffer as intermediary.

It sounds easy, doesn’t it? So why the concern expressed earlier? Wait — you
have only begun. There are other rules of syntax and usage that must be followed.

(1) On the TRS-80 with Level II, you must disable the timing mechanism before
any cassette operations. Use the DOS command CMD*T” to disable the timer or
you will get nothing but “garbage” data on the tape. The DOS command CMD“R”
reenables the timer.

(2) Data items in a cassette tape file are separated by a gap of blank tape (no data
recorded). If you use three separate PRINT # statements with one variable each,
instead of a single PRINT # statement with three variables, you use three times as
much tape. For example, these three statements:

PRINT #-~1, A
PRINT #~1, B
PRINT #-1, C

use three times as much tape as:
PRINT #-1, A, B, C

This circumstance further reinforces the desireability of using one INPUT # or PRINT
statement for an entire dataset, rather than one data item at a time.

(3) If you use a statement such as PRINT #-1, A, B, C (with three variables) to
copy datasets onto the file, then you must use an INPUT # statement with an identical
number of variables to read back the datasets. The statement INPUT #-1, X, Y, Z
would work since it also has three numeric variables. If the INPUT # statement has
only one or two variables, the result will be input errors. The real problem arises if
you forget or lose track of how the data were printed to the file. Therefore, always
immediately and accurately label the cassette with information on how to read back
the contents of the data file, by specifying the format of the PRINT # statement.

(4) If the data was printed to the file with a numeric variable to start with, our
reference manual says that you must then read that numeric value from the tape into
a numeric variable. That means to read data that were recorded with a statement
such as PRINT #-1, A use a statement such as INPUT #-1, A. In practice, we found
this untrue. We tried this:

PRINT #-1, A, B, C
followed by:
INPUT #-1, A%, BS, C$%

And it worked. The numeric values in the data file were correctly assigned to string
variables, but as strings, of course. However, the reverse was not true. Data placed

198

DATA FILE PROGRAMMING IN BASIC

in the file as strings, whether numbers or other alphanumeric characters, could not
be assigned to numeric variables. The following sequence resulted in an error message
and the program stopped execution:

PRINT #-1, AS$, B$, CS$

followed by:

100 INPUT #-1, A, B, C

gave us this error message:

(5

WRONG DATA TYPE IN LINE 100

We found that the computer would sometimes “hang up” and not respond to

the BREAK key or anything else if it was looking for data on a part of the cassette
tape past the place where data actually existed. We had to reset the system, thereby
losing the program in the computer’s memory. Resolve this problem by using a
program-generated end-of-file marker or flag, essentially a piece of “dummy data,”
that the program can test for. The technique will be presented as a substitute for

the EOF test used for disk files. It is always good practice to rewind cassettes so you
don’t accidentally try to read from an unrecorded section of tape.

With this background, you are ready to proceed with some practice examples.

First, go back to the program developed in Chapter 4 to be used for a property
inventory file. The datasets for the disk file included a property description, number
of items, and a dollar value. Here is the sequential disk file program for you to adapt
for cassette files.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

260
270
280
290

300
310

REM INVENTORY FILE LOAD PROGRAM

REM VARIABLES USED

REM D$ = DESCRIPTION (20)
REM N = NUMBER OF ITEMS
REM V = DOLLAR VALUE

REM FILES USED

REM PROPERTY = SEQUENTIAL FILE

REM INITIALIZE

oPEN "0", 1, "PROPERTY"

REM DATA ENTRY ROUTINES

LINE INPUT "ENTER ITEM DESCRIPTION:"; Ds

IF LEN(DS$) > 20 THEN PRINT "PLEASE ABBREVIATE TO 20 CHAR. AND
REENTER": GOTO 240

IF LEN(DS) = 0 THEN PRINT "PLEASE ENTER A DESCRIPTION OR WE CANNOT
CONTINUE": GOTO 240

INPUT "HOW MANY ITEMS"; N

IF N <> INT(N) THEN PRINT "ENTER INTEGER NUMBERS ONLY.": GOTO 270
IF N = <0 THEN PRINT "THERE MUST BE SOME UNITS. PLEASE ENTER A
QUANTITY": GOTO 270

INPUT "WHAT IS THE DOLLAR VALUE OF EACH"; V

IF Vv =< 0 THEN 350

CASSETTE TAPE DATA FILES 199

320
325
326
330
340
350
360

370
380
400
410
420
499

(@

PRINT #1, Ds; ","; N; VvV

LINE INPUT "MORE DATA (YES OR NO):"; R3S
IF LEFT$(R$,1) = "N" THEN 410

GOTO 240

LINE INPUT "DID YOU REALLY MEAN ZERO VALUE, YES OR NO:"; Rs

IF LEFT$(RS,1) = "N" THEN PRINT "THEN REENTER THE CORRECT VALUE":
GOTO 300

GOTO 320

REM FILE CLOSE ROUTINE
CLOSE 1

END

List the changes, including deletions, to make in the program above to adapt it
to cassette tape data files.

180 REM*** PROPERTY *CASSETTE TAPE FILE
200 DELETE

210 DELETE

320 PRINT #-1, D$, N, V

400 DELETE

410 DELETE

In addition to the above changes, a well-designed program would include these

instructions:

200 REM*** INITIALIZE

210 PRINT "PLACE CASSETTE TAPE INTO RECORDER"
220 PRINT "PRESS RECORD/PLAY BUTTONS"

400 REM

410 PRINT "STOP RECDRDER AND REWIND TAPE"

200 DATA FILE PROGRAMMING IN BASIC

If you have a cassette recorder handy, run this program and load a cassette file
with some property data. You can also write the companion program to read from
the file and prepare a screen display or printed report on the data. Complete lines
210 and 220.

(@ 100 REM PROPERTY CASSETTE FILE READER

110

120 REM VARIABLES USED

130 REM D$ = DESCRIPTION(20)

140 REM N = NUMBER OF ITEMS

150 REM V = DOLLAR VALUE OF EACH ITEM

160

170 REM FILES USED

180 REM PROPERTY — CASSETTE FILE

190

200 REM INITIALIZE

210 REM :REM GIVE THE OPERATOR
INSTRUCTIONS FOR
RECORDER

220 REM tREM PRESS ENTER TO
CONTINUE MESSAGE

230

240 REM PRINT REPORT HEADINGS

250 PRINT "ITEMS", "QUANTITY", "VALUE EACH"

260

(a) 210 PRINT "LOAD CASSETTE TAPE. IS IT REWQUND?"
220 INPUT "PRESS ENTER TO CONTINUE": x$%

Now, complete the program by following the on-line remarks.

(a) 260 :
270 REM READ THE FILE/PRINT REPORT
280 :REM READ FILE DATA
290 :REM PRINT REPORT
300 :REM RETURN TO FILE READ
310

(a) zs0 INPUT #~1, DS, N, V
290 PRINT DS, N, V
300 GOTO 280

(Note: you can use different variable names, but they should be a string variable
followed by two numeric variables.)

CASSETTE TAPE DATA FILES

201

Here is a complete listing of the program:

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310

REM PROPERTY CASSETTE FILE READER
REM VARIABLES USED

REM D$ = DESCRIPTION(20)

REM N = NUMBER OF ITEMS

REM V = DOLLAR VALUE OF EACH ITEM
REM FILES USED

REM PROPERTY — CASSETTE FILE

REM INITIALIZE

PRINT "LOAD CASSETTE TAPE. IS IT REWOUND?"
INPUT "PRESS ENTER TO CONTINUE"; X3

REM PRINT REPORT HEADINGS

PRINT "ITEMS", "QUANTITY", "VALUE EACH"
REM READ THE FILE/PRINT REPORT

INPUT #—-1, DS, N, V
PRINT D$, N, V
GQTO 280

(a) When the program above is RUN, how will it terminate?

(a) With an “out of data” message. (There is no end-of-file test.)

Cassette tape file operations do not include an end-of-file test. Under normal

conditions the program aborts with an error message when the last data item is read.
To avoid this problem, go back to the file loading program and make an addition. The
easy way to create an end of file marker is to place false or dummy data at the end of
the file — something that can be checked by an IF. . THEN statement. You can use
STOP, or *, or 999, or -1, or whatever false data item you choose. However, choose
something that is easy to remember and that will definitely not be part of the file’s
legitimate data. Also remember to note on the cassette label the end of the file
marker you have used, as well as the format for the variable list or dataset.

(a) Refer to the program for placing the property inventory data into a cassette file.
Using an asterisk (*) as a dummy string item, write a statement to place an end-
of-file marker in the proper program location to be written as the last data in the

cassette file.

202 DATA FILE PROGRAMMING IN BASIC

(b) Why are three items needed for the dummy data?

(c) Refer to the previous program. Write a statement in the correct program location
to test for the end-of-file marker and, if present, branch to the following segment:

400 PRINT "J0B COMPLETED"
410 END

(@) 410 PRINT #-1, "*", o, o (Change the other 410 “message” to 415)
(Note: statement must be placed before END and before the recorder has been
turned off.) ’

(b) The dataset is loaded into and is read back from the file in this. format. If only
one data item is available for the last INPUT # statement, a file reading error
will occur.

() 285 IF D3 = "*" THEN 400

To remove old data from a cassette tape, whether data files or programs, always
use a magnetic tape bulk eraser. If you count on the erase head built into your re-
corder to adequately erase old data before new data are recorded on the same area of
tape, you are likely to end up with problems. The built-in erase head doesn’t always
adequately clear the tape for computer applications. An unerased “bit” or two would
be inaudible if you were reusing a tape for audio recordings, but an unerased “bit”
from a previous data file could cause errors in a second data file recorded over the
same stretch of tape. This is also a reason for putting only one data file on a cassette
tape. Besides the convenience of not having to search a tape for a particular data file,
you can bulk erase an entire tape for reuse when the contents are no longer of value.

Your greatest problems probably will not be in programming, but rather in
actually operating the cassette recorder and dealing with the tapes. Programming
complexity is further reduced if you have two cassette recorders. The programs
developed in Chapter 5 work with dual cassettes with only minor modifications. You

CASSETTE TAPE DATA FILES 203

can adapt those programs to copy, make changes in data, edit, etc., as you did for
disk data files and as discussed later in this chapter.

If you have only one cassette recorder, you can still write file utility programs
as you did before, but it takes more programming. Most of the previous utility
applications used a temporary disk file, a technique not available to cassette users.
Instead of a temporary disk file, cassette users must use an array or multiple arrays
in the computer’s electronic memory as the temporary file. Otherwise, procedures
are similar to those used for disk files. The limitation of the array storage method
for the temporary file is the amount of computer memory available. For cassette
files with large amounts of data to be transferred to arrays, you may find your
computer’s memory filled beyond its capacity, meaning the program will not be able
to do its job.

Now let’s develop a model utility program to copy an existing cassette data file
onto a new cassette tape. But first, write a program to enter the data for the original
cassette data file, the one that will later be copied. Here are the specifications for
that program and data file:

1. The data items are numeric values in the range from 1 to 100, representing
statistical information (such as age, driving speed, or the like). Include a data
entry check for these parameters.

2. The values are copied onto the file with a PRINT # statement using one variable
(one value at a time).

3. You may enter as few values as you wish. We suggest a minimum of a couple of
dozen values and as many as 350 to 400 values. Using a large number of values in
the file gives you a feel for the amount of time it takes to manipulate cassette
data files.

4. Place -999 as the ending data flag at the end of the file data.

(a) Now write the program and create the data file on your computer.

204 DATA FILE PROGRAMMING IN BASIC

(@) 100 rREM STAT: DATA ENTRY
120 REM FILES - STAT1 CASSETTE TAPE
130 =
240 REM DATA ENTRY WITH TESTS
210 INPUT "ENTER VALUE OR -999"; v

220 IF V = —-999 THEN 299
230 IF V < 1 OR V > 100 THEN PRINT "DATA ERROR. PLS., REENTER":
GOTO 210

240 PRINT #-1, V
250 G60OTO 210

299 PRINT #-1, —999
300 END

Now write a simple cassette file copy routine, assuming you have only one
recorder. The key to the technique involved is to think of the array(s) as the tem-
porary file. You have a cassette file filled with numeric values originally recorded
onto the file with a program that had a PRINT # statement that looked like this:

PRINT #-1, V

Remember, you need to know that information in order to read the file correctly.
Assume that the values in the file represent statistical data you want to send to a
friend in another state, so you need a cassette copy. The file has between 350 and
400 values. You need to know how many data items are in the file so you can
correctly dimension the array. Here is the introductory module.

100 REM NUMERIC FILE COPY

110 =

120 REM VARIABLES USED

130 REM V = VALUE FROM FILE

140 REM K = COUNTER

150 REM T = ARRAY

160 REM X = ARRAY DIMENSION(VARIABLE)
170 :

180 REM FILES USED

190 REM STAT1 = CASSETTE TAPE FILE
200 REM STATIA = OQUTPUT FILE COPY
210 REM END~-OF—-FILE FLAG IS # —999
220

230 REM INITIALIZE

240 CLS

250 PRINT "PLACE STAT1 CASSETTE ON RECORDER."

CASSETTE TAPE DATA FILES 205

260 INPUT "REWIND AND THEN PRESS PLAY BUTTON"

270 INPUT "PRESS ENTER TO CONTINUE";
280

290 INPUT "ABOUT HOW MANY ITEMS ON THE FILE";

300 DIM T(X)
310 LET K = 0
320

R%

X

Look at line 290. At the moment you can’t know exactly how many data items
are in the file, so you have the program ask “ABOUT HOW MANY?” The program
uses this value to dimension the array. If you overestimate this value by too much,
you could be reserving more computer memory space for the array than is available
on your system, so be realistic. Line 310 initializes a variable, K, used to count the
data items as they are read from the cassette data file into the array. Now, fill in

the blanks in the next program segment (lines 340, 350, 360, and 370).

(a) 320 :
330 REM READ FILE INTO ARRAY
340
350
360

370

380 GOTO 340

390
(a) 320 :

330 REM READ FILE INTO ARRAY

340 INPUT #-1, V

350 IF V = —-999 THEN 410

360 LET K = K + 1
370 LET T(K) =V
380 GOTO 340

390

:REM

:REM

:REM

:REM

READ VALUE
FROM FILE
FLAG TEST/
GOTO 410
INCREMENT
COUNTER K BY
PLACE VALUE
INTO T ARRAY

In line 340 you may have done this: INPUT #-1, T(K) which is acceptable, but
for later applications it is better not to assign the data item to an array element
directly. Rather, temporarily assign each data item to the variable V until the end of

file check and counter incrementing is accomplished.

(a) If the statement at line 350 detects the end of data marker, what routines will

start at line 4107

1

206 DATA FILE PROGRAMMING IN BASIC

(a) Instructions to change cassette tapes, followed by the array copy routine.
Now, complete the crucial statement in the next program segment (line 490).

(a) 390 :
400 REM INITIALIZE FILE COPY
410 CLS
420 PRINT "REWIND STAT1 TAPE"
430 PRINT "PLACE STAT1A TAPE ON RECORDER"
440 PRINT "PRESS RECORD/PLAY BUTTONS"
450 INPUT "PRESS ENTER TO CONTINUE"; RS
460 : .
470 REM COPY ARRAY TO CASSETTE
480 FOR Y = 1 TO K
490 :REM PRINT VALUE TO CASSETTE
500 NEXT Y
510 :

(b) Why is it necessary to use counter K to count the data items?

(a) 490 PRINT #-1, T(Y)
(b) When the array is copied to the new cassette, the program must know how much
of the array contains valid data.

For this application the program concludes by writing an end of file marker
(-999) in the data file just copied.

510

520 REM PRINT EOF MARKER
530 PRINT #¥-1, -999

540 PRINT “"JOB COMPLETE"
550

CASSETTE TAPE DATA FILES 207

Use part of the copy program to prepare an add-to-file program. Can you see

what changes have to be made?

100 REM NUMERIC FILE COPY
110 :

120 REM VARIABLES USED

130 REM V = VALUE FROM FILE

140 REM K = COUNTER

150 REM T = ARRAY

160 REM X = ARRAY DIMENSION(VARIABLE)
170 :

180 REM FILES USED

190 REM STAT1 = CASSETTE TAPE FILE
200 REM STAT1A = QUTPUT FILE COPY
210 REM END~OF~FILE FLAG IS # —-999

220

230 REM INITIALIZE

240 CL.S

250 PRINT "PLACE STAT1 CASSETTE ON RECORDER."
260 INPUT "REWIND AND THEN PRESS PLAY BUTTON"
270 INPUT "PRESS ENTER TO CONTINUE"; RS
280

280 INPUT "ABQOUT HOW MANY ITEMS ON THE FILE"; X
300 DIM T(X)

310 LET K = 0

320

330 REM READ FILE INTO ARRAY

340 INPUT #-1, V

350 IF V = —-999 THEN 410

360 LET K = K + 1

370 LET T(K) = v

380 GOTO 340

390

400 REM INITIALIZE FILE COPY

410 CLS

420 PRINT "REWIND STAT1 TAPE"

430 PRINT "PLACE STAT1A TAPE ON RECORDER"
440 PRINT "PRESS RECORD/PLAY BUTTONS"

450 INPUT "PRESS ENTER TO CONTINUE"; RS
460

470 REM COPY ARRAY TO CASSETTE

480 FOR Y = 1 TO K

490 PRINT #-~1, T(Y)

500 NEXT Y

510 1

Surprise! You can use all of the copy program up to line 510.

Up to now the program can copy the original file into an array and then onto a
new cassette file. You can just reuse the original tape if you’re confident that you

don’t need a back-up copy.

(a)
line 520.

Describe what the program to add-to-file should do in the routine beginning at

208

DATA FILE PROGRAMMING IN BASIC

(b)

510
520
530
540

560

570
580

(c)

Fill in the blanks for the routine you described in (a) (540, 550, and 560).

REM
REM

END

ENTER NEW DATA ITEMS(-999 TO STOP)
PRINT 70 FILE

:REM

:REM

:REM

How does the program know to stop asking for more new data?

(a)
()

()

Provide for entry of new data and add it to the new file.

510
520
530
540
550
560
570
580

REM ENTER
REM L PRINT
INPUT ENTER
PRINT #-1, V

IF Vv <> —-999
END

NEW DATA ITEMS(-99% 70O STOP)
TO FILE "
DATA ITEM ; V

THEN 540

DATA ENTRY
T0 V

PRINT TO
FILE

END TEST/

GOTO 540

By checking to see whether the user has entered the end of file marker (-999).

In summary, merely follow the same procedures you would use for disk files,
except use an array instead of a temporary disk file.
With the use of arrays as temporary files, it is important to know how many
data items are stored in a file so you can properly dimension the arrays. Before you
estimated, but here is a variation you might want to consider. You could, as a policy,
always keep track of the number of data items in a file and place this figure as the
first data item in the cassette tape file. Then use this value to dimension the array.
Some changes in procedure are required.
The new procedures are:

1.

Read first data item (number of datasets or data items) = X.
2. Ask how many new datasets are to be added = Y.

3. Dimension the array(s) with X + Y.

4. Read the file into the array.

CASSETTE TAPE DATA FILES 209

(@

(b)

(©)

300
310
320
330
340
350

(941

Add the new data for the file into the array rather than the new file.

6. When a user signal indicates all new data have been entered, then print the
new total number of data items into the new file.

7. Copy the array data items into the new file.

As an example of this procedure, consider the grocery list program from Chapter
5. Here the data entered are item descriptions and quantity (how much of that
grocery item to buy). The first data item in the data file tells how many datasets are
already contained in the file. The program follows the seven steps outlined above.

100 REM ADD TO CASSETTE GROCERY FILE
110 =

120 REM VARIABLES USED

130 REM K = DATASET COUNT

140 REM A = HOW MANY ADDED DATASETS
150 REM D$ = ITEM DESCRIPTION

160 REM N$ = NUMBER NEEDED

170 REM G$ = ARRAY

180 REM R$ = RESPONSE STRING

190

200 REM FILES USED

210 REM GROCERY = CASSETTE FILE
220

230 REM INITIALIZE

240 PRINT "PLACE GROCERY CASSETTE

250 PRINT "PRESS PLAY BUTTON AND

INTO RECORDER"
IMMEDIATELY"

260 INPUT "PRESS ENTER TO CONTINUE"; RS

270 INPUT #-1, K

280 INPUT "HOW MANY DATASETS WILL BE ADDED"; A

290 DIM G$(K+A,2)
300

What does line 270 do?

Explain what line 290 does.

Complete line 330.

REM LOAD FILE INTO ARRAY
FOR X = 1 70 K

:REM
NEXT X

INPUT DATASET FROM FILE

210

DATA FILE PROGRAMMING IN BASIC

(d)

350
360
370
380
390
400
410
420
430
440
450
460

(a)
(b)

(0
()

Examine the FOR NEXT loop in the next program segment and complete lines
430 and 440. Line 370 controls how many new datasets are entered. Line 380
gives the number of the next empty element in the G§ array

REM DATA ENTRY ROUTINE

FOR X = 1 TO A

LET K = K + 1

LINE INPUT "ENTER ITEM DESCRIPTION"; DS
LINE INPUT "ENTER QUANTITY NEEDED:"; N$

REM PLACE DATA INTO ARRAY
:REM LOAD D$ INTO ARRAY
:REM LOAD N$ INTQ ARRAY
NEXT X

Reads the first data item in the file (number of datasets in the file).
Dimensions array G$ to size K (number of datasets in the file) plus A (number
of datasets to be added) by 2 (two items in each dataset).

330 INPUT #-1, G3(X,1), 6%(X,2)

430 LET G8(K,1) = D$
440 LET G$(K,2) = NS

And now to copy the data-filled array onto the new cassette data file or over the

old one complete lines 540 and 580.

(@

460

470 REM RECORDER INSTRUCTIONS

480 CLS

490 PRINT "PLACE REWOUND TAPE INTO RECORDER"

500 PRINT "PRESS RECORD/PLAY BUTTONS"

510 INPUT "PRESS ENTER TO CONTINUE"; RS

520

530 REM PRINT NUMBER OF DATASETS INTO FILE

540 :REM
550 :

560 REM PRINT ARRAY CONTENTS INTO FILE

570 FOR X = 1 TO K

580 :REM
590 NEXT X

600 :

610 PRINT "J0OB COMPLETE"

620 @

CASSET1E TAPE DATA FILES

211

(@

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620

Here is the complete program.

REM ADD TO CASSETTE GROCERY FILE
REM VARIABLES USED

REM K = DATASET COUNT

REM A = HOW MANY ADDED DATASETS
REM D% = ITEM DESCRIPTION

REM N$ = NUMBER NEEDED

REM G$% = ARRAY

REM R$ = RESPUONSE STRING

REM FILES USED

REM GROCERY = CASSETTE FILE
REM INITIALIZE

PRINT "PLACE GROCERY CASSETTE INTO RECORDER"
PRINT "PRESS PLAY BUTTON"

INPUT "PRESS ENTER TO CONTINUE"; RS

INPUT #-1, K

INPUT "HOW MANY DATASETS WILL BE ADDED"; A
DIM G$(K+A,2)

REM LOAD FILE INTO ARRAY
FOR X = 1 TO K

INPUT #—-1, G$(X,1), G$(X,2)}
NEXT X

REM DATA ENTRY ROUTINE
FOR X = 1 TO A

LET K = K + 1

LINE INPUT "ENTER ITEM DESCRIPTION"; D$
LINE INPUT "ENTER QUANTITY NEEDED:"; Ns
REM PLLACE DATA INTO ARRAY

LET G$(K,1) = D$

LET G$(K,2) = N$

NEXT X

REM RECORDER INSTRUCTIONS

cLs

PRINT "PLACE REWOUND TAPE INTO RECORDER"
PRINT "PRESS RECORD/PLAY BUTTONS"

INPUT "PRESS ENTER TO CONTINUE"; RS

REM PRINT NUMBER OF DATASETS INTO FILE
PRINT #-1, K

REM PRINT ARRAY CONTENTS INTO FILE
FOR X = 1 70 K

PRINT #—1, G$(X,1), G3$(X,2}

NEXT X

PRINT "J0OB COMPLETE"

You now have a background for working with cassette files and can take the

disk file programs in the previous chapters and adapt them for cassette data files.
Remember, the basic technique is to use arrays as temporary files. Also be aware of

212 DATA FILE PROGRAMMING IN BASIC

the limitations of these procedures, especially the size of the files in relation to the
size of your computer’s memory. With patience and great care, you can have the
advantages of using data files and the inexpensiveness of cassette data storage.

CHAPTER 6 SELF-TEST

1. (a) Write a program to enter datasets into a cassette file. Each dataset contains
two string data items, followed by two numeric data items. Include a user response
for “MORE DATA?” after each dataset entry and place an end of file dummy data
item as the last item of data in the file.

110

120 REM VARIABLE LIST

130 REM A%,B% = ALPHA DATA

140 REM C$(C), D3(D) = NUMERIC DATA

150

CASSETTE TAPE DATA FILES 213

1. (b) Write a companion program to Problem 1la to display the contents of the
cassette file. Include the end of file test.

110 :
120 REM VARIABLE LIST

130 REM A$,B% = ALPHA DATA

140 REM C,D = NUMERIC DATA
150 :

214 DATA FILE PROGRAMMING IN BASIC

2. (a) Write a grocery list program that allows you to enter the following into a

cassette file:

Item description — twenty characters maximum
Quantity to buy

The data entry tests should include a section that displays the entry if the

quantity is less than one or more than ten and allows the user to reenter that
quantity if needed.

120
130
140
150
160
170

REM
REM
REM
REM

VARIABLES USED
Ds = ITEM DESCRIPTION
Q = QUANTITY TO BUY
R$ = USER RESPONSE

CASSETTE TAPE DATA FILES 215

(b) Write a companion program to the one written in 2a, that displays the grocery
file contents.

110
120 REM INTRODUCTORY MODULE

130 REM VARIABLES USED
140 REM D% = ITEM DESCRIPTION

150 REM Q = QUANTITY TO ORDER
160

216 DATA FILE PROGRAMMING IN BASIC

3. (a) Write a program to create a cassette file mailing list, as indicated in the
variable list below. Concatenate the data items into one dataset per person.

110

120 REM VARIABLES USED

130 REM N$(20) = NAME

140 REM A$(20) = ADDRESS

150 REM C$(10) = CITY

160 REM S$(2) = STATE

170 REM Z$(5) = ZIP (CODE

180 REM D$(57) = ENTIRE DATASET

190 REM R$ = USER RESPONSE VARIABLE
200 =

CASSETTE TAPE DATA FILES 217

218 DATA FILE PROGRAMMING IN BASIC

3. (b) Write a companion program to count each data item as it is displayed and
display the number of the total datasets in the file (1,2,3. . .. Total is 14).

110 :
120 REM VARIABLES USED
130 REM D$ = ONE ENTIRE DATASET (57 CHAR,)

140 REM K = DATASET COUNTING VARIABLE
150 :

CASSETTE TAPE DATA FILES 219

(c) Write a program, including recorder user instructions, to make a copy of the
mailing list on a separate tape.

110 =
120 REM VARIABLES USED

130 REM D$ = ONE COMPLETE DATASET (57 CHARS.)
140 REM K = NO. OF DATASETS IN FILE
141 REM X = FOR-NEXT LOOP CONTROL VARIABLE

142 REM R$ = 'PRESS ENTER TO CONTINUE' RESPONSE VARIABLE
150 :

220

DATA FILE PROGRAMMING IN BASIC

1a.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370

1b.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240

2 a.

100
110
120
130
140
150
160
170
180
190

Answer Key
REM PROB 6~-1A SOLUTION
REM VARIABLE LIST
REM AS,B$ = ALPHA DATA
REM C$(C), D${(D) = NUMERIC DATA
REM DATA ENTRY ROUTINE
LINE INPUT "ENTER DATA ITEM:"; AS
IF LEN(A$) = 0 THEN PRINT "PLEASE ENTER SOMETHING": GOTO 170
LINE INPUT "ENTER DATA ITEM 2:"; Bs
IF LEN(B$) = O THEN PRINT "PLEASE ENTER SOME DATA": GOTO 190
LINE INPUT "ENTER NUMERIC DATA:"; Cs$
IF LEN(CS) = O THEN PRINT "PLEASE ENTER SOMETHING": GOTO 210
IF VAL(C$) = O THEN PRINT "PLEASE ENTER NUMBERS ONLY": GOTO 210
LET C = VAL(CS)
LINE INPUT "ENTER NUMERIC ITEM 2:"; Ds

IF LEN(D$) = 0 THEN PRINT "PLEASE ENTER SOMETHING": GOTO 250
IF VAL(DS) = O THEN PRINT "PLEASE ENTER NUMBERS ONLY": GOTOD 210
LET D = VAL(DS)

PRINT #-1, A%, B$, C, D

LINE INPUT "MORE DATA?"; RS
IF LEFT$(R$,1) = "Y" THEN 170

REM END-OF-DATA FLAG AND 'DUMMY' DATA FOR OTHER DATA ITEMS
PRINT #-1, —-9%9, 0, 0, O
END

REM PROB 6—18 SOLUTION

REM VARIABLE LIST

A$,B% = ALPHA DATA
REM C,D = NUMERIC DATA
REM DATA ENTRY FROM FILE

INPUT #-1, As, B$, C, D

IF A$ = —999 THEN 240
PRINT A%, B$, C, D
GOTO 180

END

REM PROB 6-2A

REM INTRODUCTORY MODULE

REM VARIABLES USED

REM D$ = ITEM DESCRIPTION (20 CHAR. MAX.)
REM Q = QUANTITY TO BUY

REM R$ = USER RESPONSE

REM DATA ENTRY ROUTINE
PRINT "ENTER '-999' WHEN FINISHED ENTERING DATA"

CASSETTE TAPE DATA FILES 221

200
210
220
230

240

250
260
270
280
290
300
310
320
330
340
345
350
360

2b.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

3 a.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280

PRINT

LINE INPUT "ENTER ITEM DESCRIPTION:"; D$%

IF D$ = "-999" THEN 350

IF LEN(DS$) = 0 THEN PRINT "PLEASE ENTER A DESCRIPTION DR '-999'":
GOTO 210

IF LEN(DS$) > 20 THEN PRINT "PLEASE LIMIT DESCRIPTION TO 20 CHARS.

AND REENTER": GOTO 210

INPUT "ENTER QUANTITY:"; Q

IF Q >= 1 AND Q < 10 THEN 320

PRINT "YOU ENTERED A QUANTITY OF"; Q

LINE INPUT "IS THAT WHAT YOU WANTED?"; RS
IF LEFT$(R$,1) = "N" THEN 250

REM WRITE TO FILE ROUTINE
PRINT #-1, D$, Q
GOTO 210

REM END-OF-~DATA FLAG AND 'DUMMY' DATA FOR Q

PRINT #-1, ~999, O
END

REM PROBLEM 6-28 SOLUTION
REM INTRODUCTORY MORQULE

REM VARIABLES USED
REM D$ = ITEM DESCRIPTION
REM Q = QUANTITY TO ORDER

REM READ AND PRINT FILE

PRINT "ITEM"; TAB(24); "QUANTITY"
INPUT #-1, D$, Q

IF D$ = "-999" THEN 250

PRINT D$; TAB(24); Q

GOTO 210

END

REM PROB 6~3A SOLUTION

REM VARIABLES USED

REM N$(20) = NAME

REM A$(20) = ADDRESS

REM C$(10) = CITY

REM Ss(2) = STATE

REM Z$(5) = ZIP CODE

REM D$(57) = ENTIRE DATASET
REM R$ = USER RESPONSE VARIABLE
REM INITIALIZE

CLEAR 1000

REM DATA ENTRY/TESTS

LINE INPUT "ENTER NAME:"; Ns

REM DATA TESTS

IF LEN{(N$%) < 20 THEN LET N$ = N$ + " ": GOTO 270
LINE INPUT "ENTER ADDRESS:"; AS

222 DATA FILE PROGRAMMING IN BASIC

290 REM DATA TEST

300 IF LEN(AS$) < 20 THEN LET A% = A$ + " ": GOTO 300
310 LINE INPUT "ENTER CITY NAME:"; Cs3

320 REM DATA TESTS

330 IF LEN(CS$) < 10 THEN LET C$ = C$ + " ": GOTO 330
340 LINE INPUT "ENTER STATE CODE:"; S$

350 REM DATA TEST

360 IF LEN(S$) <> 2 THEN PRINT "PLEASE ENTER 2 CHARACTER CODE": GOTO 340
370 LINE INPUT ENTER ZIP CODE: ; Z%

380 IF LEN(Z$) <> 5 THEN PRINT "PLEASE ENTER 5-DIGIT CODE": GOTO 370

390

400 LET D% = N$S+A$+(C$+S3$+2%

410

420 PRINT #-1, D$

430

440 LINE INPUT "MORE ENTRIES?"; RS

450 IF LEFT$(R$,1) = "Y" THEN 250

460

470 PRINT #-1, "-999"

480 END

3b.

100 REM PROB 6-3B SOLUTION

110 :

120 REM VARIABLES USED

130 REM D$ = ONE ENTIRE DATASET (57 CHAR.)
140 REM K = DATASET COUNTING VARIABLE
150 :

160 REM INITIALIZE

170 CLEAR 500

180 LET K = 0

190

200 REM READ, COUNT, AND DISPLAY DATASETS
210 READ #-1, DS

220 LET K = K + 1

230 IF D$ = "-999" THEN 270
240 PRINT K; " "3 Ds

250 GOTO 210

260 PRINT

270 PRINT "TOTAL DATASETS INCLUDING END OF FILE FLAG;"; K
280 END

3c.

100 REM PROB 6-3C SOLUTION

110

120 REM VARIABLES USED

130 REM D% = ONE COMPLETE DATASET (57 CHARS,)

140 REM K = NO. OF DATASETS IN FILE

141 REM X = FOR=NEXT LOOP CONTROL VARIABLE

142 REM R$ = 'PRESS ENTER TO CONTINUE' RESPONSE VARIABLE
150

160 REM INITIALIZE

170 CLEAR 500

180 INPUT "HOW MANY ITEMS IN THIS DATAFILE"; K
190 DIM A$(K)

200

210 REM READ DATASETS INTO ARRAY

220 FOR X = 1 TO K

230 READ #¥-1, D%

CASSETTE TAPE DATA FILES

223

240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420

LET A$(X) = D%
NEXT X

PRINT "STOP RECORDER. REWIND TAPE. REMOVE FROM RECORDER."
PRINT "PLACE NEW TAPE IN RECORDER, REWIND TO BEGINNING."
PRINT "PUT RECORDER IN RECORD MODE,"

LINE INPUT "PRESS 'ENTER' WHEN READY TO CONTINUE."; RS

REM FIRST DATA ITEM IN NEW FILE IS NO. OF DATASETS
PRINT #-1, K

REM COPY ARRAY TO CASSETTE DATA FILE
FOR X = 1 TO K

LET DS = A$(X)

PRINT #-1, D$

NEXT X

PRINT "COPY COMPLETE"
END

CHAPTER SEVEN
Random Access Data Files

Objectives: When you complete this chapter, you will be able to use the following
statements and functions in programs to create, verify, copy, and change random
access disk data files: FIELD, LSET, RSET, PUT, GET, LOF(), MKS$(), MKIS$(),
MKD$(), CVS(), CVI(), and CVD(). You will also be able to convert sequential
files to random access files.

INTRODUCTION

The next two chapters illustrate the use of random access data files.

Programs using random access data files present more variations in the BASIC
instructions among different versions of MICROSOFT BASIC than any other BASIC
language procedure. Therefore, while most of what you have learned so far has worked
on nearly any microcomputer that uses a version of MICROSOFT BASIC, that will
not be the case with this chapter and the next. However, continue working through
this material, even if you do not have a Radio Shack TRS-80 computer with DOS
BASIC, the system used to write these chapters and to which the programming
procedures specifically apply. BASIC-80 uses the same language syntax as TRS-80.
Every effort has been made to show you how to use random access files with good,
general, fundamental procedures that will apply to any BASIC language syntax. Only
the exact statements and syntax may be different. After you have read these chaprters,
you can refer to the reference manual for your system and make sense of it. You can
then apply the specific programming syntax for your system to the general concepts
presented here.

224

RANDOM ACCESS DATA FILES 225

WHAT IS A RANDOM ACCESS FILE?

A random access data file is a disk file divided into sections called records that permit
you to easily change data. The structure also allows very fast access of data, whether
located in the first or last record in the file. These two strengths of random access
files are the greatest weaknesses of sequential data files.

Random access files use a different set of instructions than sequential files, except
for the OPEN and CLOSE procedure. Random access files use a complete record of
256 bytes for each dataset (255 bytes on some computers, and user selected length
files on still others). The file is read as one complete record (and dataset) at a time.
When a dataset is printed or recorded to the file, a complete record is used each time.
The technique stressed earlier, that you set up your program to read or write a complete
dataset at a time, will help you understand the workings of random access files.

The only disadvantage of using random access files is that the fixed record length
file wastes disk space if you place only a small amount of information in each record;
that is, if the dataset size is considerably less than the length of a record in bytes. For
example, if each record is 256 bytes and you place only 100 bytes of data in each
record, then 60 percent of the space in each record becomes blanks, leaving a lot of
unused disk space. The selected length record available on some computers eliminates
the wasted disk space. Dividing full records into “sub-records” is another way to
reduce wasted disk space but is a complex technique you should delay using until you
are confident in your use of random access files.

Using random access files requires more preplanning and more carefully designed
systems for organizing and using data. Once planned, random access files require much
less programming to accomplish the same activities as sequential files. Random access
files are put to best use when the data in the files change frequently. This might be the
case with a customer charge account file or when you have a large data base, such as
a customer credit information file that you will be accessing in no particular order
(randomly). For large scale applications, you may find yourself designing systems that
use some sequential files and some random access files in concert.

(a) On a system that uses a complete 256 byte record for each dataset in a random
access file, what size datasets use disk space most efficiently?

(b) What are two advantages of random access disk files compared to sequential files?

226 DATA FILE PROGRAMMING IN BASIC

(a) A dataset that uses most or all of the 256 bytes in a record.
(b) (1) Fast access to all datasets (records), regardless of position within the file.

(2) Easy to change data within a particular dataset or record.
Initializing Random Access Files
For random access files, the OPEN statement serves the same purpose of assigning a
buffer to the file(s) as in sequential files. The difference is that the buffer assigned
can be used for both input and output. The format of the OPEN statement for random
access files is as follows:

120 OPEN "R", 3, "RNDTEST"

The “R” indicates random access files, followed by the buffer number (3 in this case),
followed by the file name.

The CLOSE statement operates exactly the same for both sequential and random
access files. A CLOSE statement by itself, such as:

860 CLOSE

will close all open files. The statement to close only the file opened in example line
120 above uses this notation:

860 CLOSE 3

Explain what each of the following statements does.

(a) 310 oPEN "I", 1, "ADDRESS"

(b) 310 OPEN "O", 2, "TEMPFIL"

(c) 310 oPEN "R", 1, "MASTER"

(a) opens a sequential disk data file as an input file named ADDRESS, assigned to
buffer #1.

(b) opens a sequential disk data file as an output file named TEMPFIL, assigned to
buffer #2.

RANDOM ACCESS DATA FILES 227

(c) opens a random access disk data file named MASTER as an input or output file,
assigned to buffer #1.

BUFFER FIELDS

The second step after opening a file is to “field” the buffer(s) that the program will
use; that is, to define the fields for data within the 256 byte record. The FIELD
statement organizes the assigned buffer into discrete data fields into which data are
placed and from which data are read. Those of you with experience during the punch
card era will recognize this concept of fields, which assigns the same specific data to
the same location in the buffer for each dataset. The concept is very similar to the
data fields within a string used in some sequential data files.

DATE NAME ADDRESS ACCOUNT UNUSED PUNCH CARD
BALANCE

1\—L6 7~ 26 27 — 46 47 - 53 54 — 256
ACCOUNT

DATE NAME ADDRESS BALANCE UNUSED BUFFER

 —— g VA g
6 20 20 7 (Number of character positions in
each field.)

The fields in the illustration are defined by the following field statement, where
the buffer number assigned in the OPEN statement is 3.

130 FIELD 3, 6 AS DATES, 20 AS NAMES, 20 AS ADDS$, 7 AS BALS

In some versions of BASIC it is not necessary to “field the buffer” or define the
data fields within the 256 byte-length record. However, it is always necessary to think
in terms of data fields, so you know where in the record each part of the dataset is
located. Therefore, it is nice to have a FIELD statement as a required part of a
program. Those computer systems that do not use a FIELD statement require the
programmer to annotate the program with REMARK statements providing the same
information.

228 DATA FILE PROGRAMMING IN BASIC

A series of five datasets occupying the first five records in a random access file
with the format defined by the FIELD statement previously can be visualized like this
(only part of the second and third fields are actually shown):

Record 1
Record 2
Record 3
Record 4

Record §

4 5 6 7 8 9 1011 12 1314 27 28 29 30

47 48 49 50 51 52 53 54 55

1i8j0jSMJ1]T|H| |L §§3017 B%{ 510)0 ;
s|slo|l|O|NIE]S B 321 A STgi 1{6{0]0 g
4l8|o]ClAIRIR] |S §§z43#1 %%325121 §
179 |u|uln|T|E[R T§§4o ARC}Z 48 ?
T(8({2{T|RII|CIE] |J é}xls sofg; 31447115 &

Refer to record 2 in the illustration and answer these questions.

(a) What is the name of the person in record 2?
(b) What is the street address?
(c) What is the balance recorded in this record?

(d) On what date was this transaction?

(a) B. Jones
(b) 1 A Street
(c) 1600

(d) 12-25-80

Let’s plan the buffer fields for a customer data file named MASTER that includes
the data listed below for each customer. The maximum length of each data item in
bytes or characters is indicated in parentheses. All data items are entered as strings.

Customer number (6)

Customer name (20)

Street address (20)

City, state, and zip code (20)

Phone number (10)

Total: 76 bytes (out of 256 bytes available)

The FIELD statement for this data could look like this:

130 FIELD 3, 6 AS CF$, 20 AS NF$, 20 AS AFs$, 20 AS SF$, 10 AS PF$

Line 130 telis the computer to divide buffer number 5 into sections, reserving six bytes

RANDOM ACCESS DATA FILES 229

tor CF§, twenty for NF§, twenty for AFS$, etc. The remaining unused 180 bytes in
each record do not have to be FIELDed.

Notice that each field is identified by length and a variable. The variable name
follows the normal rules for string variable names. Throughout this text simple variable
names have been used and have been defined in an introductory module. Simple variables
consist of one alphabetic character, sometimes followed by one numeric character, such
as A, A$, P, P1, P1$. The letter F is convenient for Field as the last character in the
buffer variable names. This convention is a constant reminder that the variables in
question are fielded buffer variables — not the usual string variables. No rule says you
must use a “reminder” character in the buffer variable names; these variable names
follow the same rules as string variables. However, it is easier to follow a program’s
logic by using the F. If N$ (for Name) is the variable to which a customer name is
assigned, and NF§ is the buffer variable for the customer name field; consistency in
the BASIC program code makes the program easier to read and follow. Using the same
“reminder” character (F) also eliminates the need to list buffer variables separately in
the introductory module.

Many versions of BASIC allow you to use long variable names; that is, variables
with more than one or two characters. However, many versions of BASIC check and
use only the first two characters of a long variable name as the actual label for the
value or string assigned to them (TRS-80 BASIC). These versions of BASIC allow use
of both NAMES$ and NAMEFS$ as variables, but actually only use NAS$ as the variable
label internally, making the two apparently different variables actually the same. In
order to use the F reminder for long variable names in these versions of BASIC, use
the F as the leading rather than the last character in the variable name, i.e., use
FNAMES instead of NAMEF$. Remember that only the first two characters may
actually count; the rest of the long variable name is strictly for the program reader’s
convenience in recalling what the value or string assigned to that variable represents.

The buffer field variable names used in the earlier examples are all string variable
names, but not in the ordinary sense. They do not reserve or consume string variable
space in the computer’s memory. They do assign field space in the buffer, which is
different. You can perform some, but not all, string variable operations with buffer
variables. It is important to remember that you canNOT use the same variable name
for both a regular string variable and a buffer field variable. If a program contained
the following sequence of statements, an error would result because the second state-
ment essentially nullifies the assignment action of the first.

120 FIELD 1, 25 AS Bs, 25 AS (CF$
130 LET B$ = X$

In this case, after line 130 is executed, B$ is no longer available as a buffer field
variable; it has been reassigned as an ordinary string variable.

(a) Write a FIELD statement for a random access file assigned to buffer number 2
for the following dataset:

A catalog number with seven characters entered as a string. (C$)
A catalog description with up to sixty characters maximum. (D$)

A price for the item with up to six characters entered as a string. (P$)

230 DATA FILE PROGRAMMING IN BASIC

540 FIELD

(b) Which of the following FIELD statements is not acceptable and why?

&)
(2
3

240 FIglb 2, 5 AS NF3%, 10 AS PF$, 4 AS CF$, 4 AS BFs
540 FIELD 1, B85 AS AF$, 85 AS BF$, 85 AS CF$, 85 AS DFS$

320 FIELD 2, 25 AS GF$, 4 AS PF, 16 AS NF$, 10 AS CF

(a) 540 FIELD 1, 7 AS CF§, 60 AS DF$, 6 AS PF§
(b) 2, because more characters are reserved in the field than are available in one re-
cord. 3, because two field variables are not in string variable format.

SIMPLE READ AND WRITE OPERATIONS TO RANDOM
ACCESS FILES WITH STRING DATA

Now consider the sequence of procedures to use random access files with string variables
(not numeric data assigned to numeric variables).

1.

2.
3.
4

OPEN the file(s).

FIELD the buffer(s).

Enter the data, assigning it to ordinary string variables.

Assign the position of string variables data to the buffer fields, using LSET
and/or RSET.

PUT the buffer to the disk file, or GET data from the disk file into the
buffer.

Display, move, copy, or otherwise manipulate the buffer contents.

CLOSE the files.

RANDOM ACCESS DATA FILES 231

e ——

KBD
function

006 | ®—

Computer Buffer

Memory &
T ®

@

Printed
Report

=0

Disk

FIGURE 7-1. Seven steps for using random access files with string

variables.

Now try a simple application program using random access files, following the
steps outlined. The program will enter data into a random access file. The datum is
an inventory of repair parts, including a six-digit product number entered as a string
and a product description of up to twenty characters, with one of these datasets per

-record. “How many” or quantity in stock will be added later. The introductory

module looks like this.

below.

() 100
110
120
130
140
150
160
170
180
190
200
210
220
230

REM
REM

REM
REM

REM
REM

REM

PARTS INVENTORY (R—-A FILE DEMO)

VARIABLES USED
N$ PART NUMBER(6)
D% DESCRIPTION(20)

it

FILES USED
INVEN = R-A FILE

FILE INITIALIZATION
:REM
:REM

(a) =210

OPEN
220 FIELD

"R", 1, "INVEN"
1, 6 AS NF$, 20 AS DF$

Fill in the OPEN and FIELD statements at lines 210 and 220

OPEN FILE
FIELD THE BUFFER

A data entry module should include data entry checks or validity tests which are
merely noted here since you already know how to do them.

232 DATA FILE PROGRAMMING IN BASIC

240 REM DATA ENTRY MODULE

250 LINE INPUT "ENTER PRODUCT NUMBER(6)"; N$
260 REM DATA ENTRY TESTS HERE

270 LINE INPUT "ENTER DESCRIPTION(20)"; Ds
280 REM DATA ENTRY TESTS HERE

290

The preceding segment assigns the data to regular string variables. To assign the
data to buffer variables, use the LSET or RSET statements. These statements place
string variable data into previously defined buffer fields. The statement LSET left-
justifies the information in the field; that is, the datum starts at the first character
position in the field to the “left end” of the field space. If there are fewer characters
in the data than the space reserved for them, the remaining unused character positions
in the field are automatically filled with blank spaces. On the other hand, if the data
to be fit into the field have more characters than are reserved, the excess characters
are truncated (left out), and no error message alerts you to this occurrence. Consider
the case of a twenty-character (maximum) data string and a defined twenty-character
buffer field. Instead of using a string assigned to a variable, use a direct assignment of
the string to the buffer variable for clarity.

LSET DF$ = "MOTHERBOARD"
This statement fills the buffer field like this:
[M/O/T/H/E/R/BJOJA[R]/D] | | [] [[[]

The remaining character positions in the field are filled with blanks. Notice that LSET
places the data into the field starting at the left-most character position in the field.
RSET does the exact opposite. Data are right-justified in the field; that is, the last
character in the data is located at the end or right-most character position in the buffer
field. In this case, if the data have fewer than twenty characters, the extra leading
spaces in the field are filled with blank spaces.

RSET DF$ = "MOTHERBOARD"

This statement fills the buffer field like this:

L1] T[T [] /M[OJT/H/E/R/BJOJA[R/D]

The leading character positions are filled with blanks. Note that if the data contain
more than twenty characters, some leading characters in the data are lost by truncation.

310 LET D$ = "COMPUTER MEMORY BOARDS"
320 LSET DF$ = DS

RANDOM ACCESS DATA FILES 233

If DF$ was fielded for twenty characters, this is all that would be included in the data

field:

[C/O/M/P/UJT/E/R/ [M/E/M/O/R/Y[/[B/O/A/R/

If you used RSET instead of LSET:
320 RSET DFS = DS

then the data would be truncated to fit the twenty character field like this:

[M/P/UJT/E/R]/ [M/E/M/O/R/Y/ /[B/O/A/R/D]JS]

To assign data to a buffer variable and place it into the field, use either RSET
or LSET. However, RSET is seldom used except, perhaps, to right-justify numeric
data. Be consistent in your procedures by using only one or the other.

Consider again this representation of a series of records in a random access file
and the FIELD statement that structured the dataset.

130 FIELD 3, 6 AS DATES$, 20 AS NAMES, 20 AS ADD$%, 7 AS BALS

1 2 3 4 5 6 7 8 9 1011121314 27 28 29 30 47 48 49 50 51 52 53 54 55
Record 1 014101 ;8]0 |S ML]T|H L é g 31017 B 5 { 5100 ;
Record 2 {1 [2|2|5|8[0]|J|O|NIE|S B ‘3 % I A S|T ; i 116010 g
Record 3 |0 |7 10|48 |0JC|JA|RIR S ; § 2043 |#|1 § .i 3iz2l5)1201 §
Record 4 [1 {012 {179 |H|U|N[T{E|R T } g 410 A[RIC % z 418 i
Record 5 [1 {111 (71812 |T|R{1 C|E] é 2 1{1]s S{0 2 z 3141715 %

(a) Which buffer variable(s) were definitely assigned with LSET?

(b) Which buffer variable(s) were definitely assigned with RSET?

(c) Which buffer variable(s) could have been assigned with either LSET or RSET?

(a) NAMES, ADDS
(b) saALS
(c) DATES

234 DATA FILE PROGRAMMING IN BASIC

Notice that if the datasets in a series of records like the preceding were to be
displayed on the CRT or printed one after the other in their fielded format, the alpha-
numeric data would be left-justified and the dollar (or dollar and cents) entries would
be rightjustified (as expected for a column of figures), so the decimal points in the
column are aligned.

Now that you understand the use of LSET and RSET, let’s return to the example
program under consideration which looks like this so far:

100 REM PARTS INVENTORY (R—A FILE DEMO)
110
120 REM VARIABLES USED

130 REM N$ = PART NUMBER (6)
140 REM D$ = DESCRIPTION(20)
150

160

170 REM FILES USED

180 REM INVEN = R—A FILE

190

200 REM FILE INITIALIZATION
210 OPEN "R"™, 1, "INVEN"

220 FIELD 1, 6 AS NF$, 20 AS DF$
230

240 REM DATA ENTRY MODULE

250 LINE INPUT "ENTER PRODUCT NUMBER(6)"; NS$

260 REM DATA ENTRY TESTS HERE

270 LINE INPUT "ENTER DESCRIPTION(20)"; Ds
280 REM DATA ENTRY TESTS HERE

290

Complete lines 310 and 320 to assign entered data to the buffer fields.

(& =290
300 REM PLACE DATA INTO BUFFER
310 :REM PLACE N$
320 :REM PLACE DS
330

N%
Ds$

(@) 310 LSET NFs
320 LSET DF$

[

Note that data are not entered directly into the buffer. Instead, the data entered
are assigned to a regular string variable and then placed into the buffer with LSET.

At this point, all the data are in place. The buffer contains the data to be re-
corded into the random access file. How? Use the PUT statement to tell the computer
to copy or print the entire contents of the buffer into a record in the file. Which
record? You can either specify exactly which record is to be filled, or you can let the
computer fill what is called the “current record.” When you OPEN a file, the current
record is record number 1. After each execution of the PUT statement, the current

RANDOM ACCESS DATA FILES 235

record number is increased by one. Then that record is filled (number 2, then number
3, etc.). If the PUT statement looks like this:

PUT 1

where the “1” is the buffer number, then each execution of the PUT statement fills the
current record and automatically increases the record number by one.
If the PUT statement looks like this:

PUT 1, R

where the R is the specified record number, then record number R is filled with the
buffer contents and the current record number becomes R + 1. You can think of the
record number as the position of the record pointer, similar to the data pointer in
sequential files.

Continuing with the program, fill in line 350.

(a) 330:
340 REM PRINT TO FILE
350 :REM WITHOUT A RECORD #

360

(a) 350 PUT 1

The program is nearly complete. Execution of the program so far allows you to
enter data, and to print one dataset to the first record in the file. Complete the pro-
gram with the segment below, and it will accept data and place it in a random access
data file until you tell it to stop.

360 =

370 REM MORE DATA?

380 LINE INPUT "DO YOU HAVE MORE ENTRIES?"; R$
390 IF LEFT$(R%,1) = "Y" THEN 250

400

410 REM CLOSE FILE

420 CLOSE 1

430

Here are the program segments gathered into a complete listing:

100 REM PARTS INVENTORY (R-A FILE DEMD)

110 =
120 REM VARIABLES USED
130 REM N$ = PART NUMBER (6)

continued on next page

236 DATA FILE PROGRAMMING IN BASIC

140 REM D$ = DESCRIPTION(20)
150

160

170 REM FILES USED

180 REM INVEN = R~A FILE

IN[

200 REM FILE INITIALIZATION

210 OPEN "R", 1, "INVEN"

220 FIELD 1, 6 AS NF$, 20 AS DF$

230

240 REM DATA ENTRY MODULE

250 LINE INPUT "ENTER PRODUCT NUMBER(6)"; NS

260 REM DATA ENTRY TESTS HERE
2N[LINE INPUT "ENTER DESCRIPTION(20)"; Ds
280 REM DATA ENTRY TESTS HERE

290

300 REM PLACE DATA INTO BUFFER

310 LSET NF$ = N$

320 LSET DF$ = DS

330

340 REM PRINT TO FILE

350 PUT 1

360

370 REM MORE DATA?

380 LINE INPUT "DO YOU HAVE MORE ENTRIES?"; R$
390 IF LEFTS$(RS$,1) = "Y" THEN 250

400

410 REM CLOSE FILE

420 CLOSE 1

430

Before proceding, consider the following information. 1) You can refield a
buffer (that is, change the data structure for the same R-A file) using another FIELD
statement in a program, but usually you should avoid doing so. If “refielding” is
necessary, always provide ample explanation of your program’s procedures in REMARK
statements or the program’s actions will be totally unclear to a reader/user. 2) If a
program PUTs to a record whose record number is beyond the end of the file, the
statement will be executed. However, the records between the last used record and
the one indicated by the current PUT statement are allocated to the file and left
unfilled. For example, if the highest used record number is 25 and the program
encounters the statement:

PUT 1, 226

then 200 new, empty records are created between record number 25 and record num-
ber 226, using a lot of disk space. 3) The maximum number of records in a random
access file on the Radio Shack computer with a 5% disk is 335.

Using the program just developed, assume that you have filled the random access
file called INVEN with the following data:

ITEM # DESCRIPTION
112131 MOTHERBOARD
341232 5 IN. DISKETTES
341233 8 IN DISKETTES
871256 RE232 INTERFACE

983476 5 IN DISK DRIVE

RANDOM ACCESS DATA FILES 237

Now let’s write another program to display the contents of this random access file. You
could incorporate this program into the previous one later. Again, fill in the OPEN
and FIELD statements in the introductory module of the program at lines 200 and

210 below.
(a) 100 REM INVEN RANDGOM FILE READ/PRINT
110
120 REM VARIABLES USED
130 REM NF$ = PRODUCT NUMBER(6)
140 REM DF$ = DESCRIPTION(20)
150
160 REM FILES USED
170 REM INVEN = RANDOM ACCESS FILE
180
190 REM INITIALIZATION
200
210
220
230 PRINT "ITEM #", "DESCRIPTION"
240
(@) =200 oPEN "R", 1, "INVEN"

210 FIELD 1, 6 AS NF$, 20 AS DFs$

OFPEN FILE
FIELD BUFFER

Note the use of the buffer variable names in lines 130 and 140 since the data
will be read from the disk record directly to the buffer. The OPEN and FIELD state-
ments are identical to those used in the previous program that created the file.

To input or copy data from the disk to the buffer, use the GET statement. GET
works like the PUT statement in reverse. Data are input or copied from the disk file
to the buffer with the GET statement. The formats for the GET and PUT statements

are the same.

270 GET 2

means copy the contents of the “current record” to buffer number 2 and then incre-
ment the current record number by one (advance the record pointer by one record).

270 GET 1, R

means copy the contents of record number R to buffer number 1 and increment the
current record counter by one (advance the record pointer by one record).
The program module to read the file and print the report looks like this:

240

250 REM READ THE FILE/PRINT REPORT

260 IF EQOF (1) THEN 320
270 GET 1

continued on next page

238 DATA FILE PROGRAMMING IN BASIC

280 PRINT NFs$, DF3
290 GOTO 260

300

310 REM CLOSE FILE
320 CLOSE 1

330

Notice the end-of-file test in line 260. Without this test, the program would hang-
up in a loop and keep trying to GET data forever. You would have to use the BREAK
key to terminate the program. The CRT screen would print the data in the file and
then continue displaying “blank™ records until the other data were pushed off the
screen. For unknown reasons, no end-of-file error message is associated with random
access GET statements in our version of TRS-80 BASIC.

The GET statement in line 270 above copies the entire contents of the current
record into the buffer. Line 280 prints the fielded buffer contents on the screen. It
is not necessary to reassign the buffer data to regular string variables before printing
or displaying it on the screen. However, it is necessary to first place data in a regular
string variable before you place it into the buffer with a field variable, for copying
to the data file. Watch out for that distinction.

An alternative to detect the end of file uses the LOF funetion. LOF stands for
length of file and tells the number of the last record presently used in the file. The
format is LOF(1) where the number in the parentheses is the buffer number of the
file in question. The program module below is a substitute for the read and print
module in the previous program. The use of LOF() as the upper parameter in a
FOR NEXT loop will GET and PRINT exactly the number of records that are used
in the file.

240

250 REM READ THE FILE/PRINT REPORT
260 FOR X = 1 TO LOF(1)

270 GET 1

280 PRINT NFS$, DF$

290 NEXT X

300 .

310 REM CLOSE FILE

320 CLOSE 1

330

The LOF() function can also tell the computer into which record to start placing
new data when you want to add data to an existing random access file. Examine the
following program segment to see the technique for adding a record to the end of an
existing random access data file.

240 LET R = LOF(3) + 1
250 PUT 3, R

Using the introductory and data entry modules that follow as a guide, complete
the program to add new datasets into an existing random access file of customer phone
numbers. Complete lines 370, 380, 390, 420, and 490.

RANDOM ACCESS DATA FILES

239

(2)

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500

REM RANDOM FILE COMPLETION

REM VARIABLES USED

REM N$ = CUSTOMER NUMBER (5)
REM C$ = CUST. NAME (20)

REM P$ = PHONE NUMBER (10)

REM R = CURRENT RECORD COUNTER

REM FILES USED
REM PHONE = RANDOM ACCESS FILE

REM FILE INITIALIZATION
oPEN "R", 1, "PHONE"
FIELD 1, 5 AS NF$, 20 AS CF$, 10 AS PFs$

REM LOCATE LAST USED RECORD
LET R = LOF(1) + 1

REM DATA ENTRY MODULE

LINE INPUT "ENTER CUST. #:"; Ns$
REM DATA ENTRY TEST

LLINE INPUT "ENTER CUST. NAME:"; Cs
REM DATA ENTRY TESTS

LINE INPUT "ENTER PHONE #:"; PS$

REM DATA ENTRY TESTS

REM MOVE DATA TO BUFFER

REM COPY BUFFER TO FILE

REM MORE DATA TO ENTER?
LINE INPUT "DO YOU HAVE MORE:"; Rs
IF LEFT$(R3%,1) = "Y" THEN 290

REM CLOSE FILE

360
370
380
390
400
410
420
430
440
450
460
470
480
490
500

REM MOVE DATA TO BUFFER
LSET NF$ = N$
LSET CF3 = (%
LSET PF$ = P$%

REM COPY BUFFER TO FILE

PUT 1,R

REM MORE DATA TO ENTER?

LINE INPUT "DO YOU HAVE ANY MORE?"; RS
IF LEFTS$(RS$,1) = "y" THEN 290

REM CL.LOSE FILE
CLOSE 1

240 DATA FILE PROGRAMMING IN BASIC

(a)

Now add to the previous program a module to read and print the entire contents
of the file, including the new entries. This segment will begin at line 510.

510 REM READ/PRINT ENTIRE FILE
510 REM READ/PRINT ENTIRE FILE

520 OPEN "R", 1, "PHONE"

530 FIELD 1, 5 AS NF$, 20 AS CFs, 10 AS PF3
540

550 FOR X = 1 TO LOF(1)

560 GET 1

570 PRIN1 NFs$, CF$, PF$

S80 NEXT X

590 :

600 CLOSE 1

610 :

USING RANDOM ACCESS FILES WITH NUMERIC DATA

So far only alphabetic or string data have been used in the random access files. Now
that you have a basic knowledge of random access files, you are ready for the extra
steps necessary to use numeric data with random access files.

To avoid problems, always remember: Only string information can be placed into

RANDOM ACCESS DATA FILES 241

a buffer for random access files. Therefore, all numeric data must be converted to
strings before the data are placed in the buffer. Likewise, all numeric data read from

a file must be converted from a string to numeric form before the values are mani-
pulated mathematically or otherwise used in expressions or functions. This process
requires extra steps, but fortunately, BASIC provides the functions needed to make
these conversions easy. To convert numeric data to string form before placing in the
buffer and hence to the file, use the three functions explained below. The parentheses
after each function can contain a value or a numeric variable to which a value has been
assigned.

MKS$() — make (MK) a single (S) precision value into a string that is four bytes in
length. Examples:

340 LSET DF$ = MKS$(476.23)

or the equivalent with the value assigned to a numeric variable:

330 LET X = 476.23
340 LSET DF$ = MKS3(X)

The similar functions for making integer values and double precision values into strings
for random access file storage look like this:

MKI$() — make an integer (I) value into a two-byte string.
MKDS$() — make a double (D) precision value into an eight-byte string.

The length of the strings (in bytes) that result from using these functions is
important, because you have to FIELD the buffer differently according to whether
the values are integers, or single or double precision values (two, four, or eight bytes).
The examples use single precision numbers. Note in the example statements above that
LSET places the converted numeric data into the buffer. If you use RSET, do some
thorough testing for possible errors when these strings are read from the file and con-
verted back to numeric values.

From line 340 in the preceding example, DF$ was assigned the string representa-
tion of a numeric value. If you attempt to PRINT DF$ on your display, you will get
some interesting but undecipherable hieroglyphics. This is because the string variable
conversion performed by MKS$() makes a “representation” of the numeric value that
is not necessarily usable in its converted form. To restore these converted numbers to
usable numeric values, use the three conversion functions that reverse the action of the
ones discussed earlier. (The buffer variable to be converted back to numeric value form
is enclosed in parentheses.)

CVS() — convert (CV) or restore to single (S) precision numeric form the string
indicated in the parentheses.

Typically, this string variable in the parentheses is a fielded buffer variable that was
made into a string with the MKS$() function. If the length of the string to be con-
verted is fewer than four characters, you will get an error message. If the length of

242 DATA FILE PROGRAMMING IN BASIC

the string is greater than four characters, only the first four characters are used in the
conversion. Here are examples of CVS() in the context of statements:

460 PRINT CVS(DF$)
310 LET D = CVS(DF$)

CVI() — convert or restore to integer (I) numeric form the string indicated in the
parentheses. If the string length is less than two an error message results. If the string
has more than two characters, only the first two are used.

CVD() — convert or restore to a double (D) precision numeric value the string indicated
in the parentheses. If the string length is fewer than eight characters, you’ll get an

error message. If the string length is greater than eight characters, only the first eight
characters are used.

Remember: Use matching functions to make numeric values into strings and to
convert them back to numeric form when dealing with random access file data. If you
mismatch functions, you may get an error message or erroneous data.

If you use MKS$() to make a value into a string, use CVS() to convert it back.
If you use MKD$() to make a value into a string, use CVD() to convert it back.
If you use MKI$() to make a value into a string, use CVI() to convert it back.

The INVEN file created earlier contains product numbers and product descriptions.
Assume you now want to add to that program the statements to place the quantity
available of each item into the same file. Following is the original program:

100 REM PARTS INVENTORY (R—-A FILE DEMO)
110 :

120 REM VARIABLES USED

130 REM N$ = PART NUMBER (6)

140 REM D$ = DESCRIPTION(20)

150

160

170 REM FILES USED

180 REM INVEN = R—-A FILE

190

200 REM FILE INITIALIZATION

210 OPEN "R", 1, "INVEN"

220 FIELD 1, 6 AS NFS$, 20 AS DFs

230

240 REM DATA ENTRY MODULE

250 LINE INPUT "ENTER PRODUCT NUMBER(6)"; N$
260 REM DATA ENTRY TESTS HERE

2N[LINE INPUT "ENTER DESCRIPTION(20)"; D%
280 REM DATA ENTRY TESTS HERE

290

300 REM PLLACE DATA INTO BUFFER

310 LSET NF$ = NS$
320 LSET DF$ = D$

330 :

340 REM PRINT TO FILE

350 PUT 1

360 :

370 REM MORE DATA?

380 LINE INPUT "DO YOU HAVE MORE ENTRIES?"; RS
390 IF LEFT$(RS$,1) = "Y" THEN 250

400 :

410 REM CLOSE FILE

420 CLOSE 1
430

RANDOM ACCESS DATA FILES 243

To modify the program, add this statement:

150 REM Q@ = QUANTITY (SINGLE PRECISION)

You modify the FIELD statement in line 220 to include the quantity variable.

(@) 210 oPEN "R". 1, "INVENZ2"
220

() 220 FIELD 1, 6 AS NF$, 20 AS DFS, 4 AS QF$

Also add to the program:

290 INPUT "QUANTITY AVAILABLE"; Q
295 REM DATA ENTRY TESTS

Write the buffer placement statement for quantity.

(a) 330

(b) What change is needed for the print to file statement?

(8) 330 LSET GF3 = MKS$(Q)
(b) No change. The entire dataset in the buffer will be PUT, so line 350 is unchanged.

Following is the program used to print the contents of the earlier version of the
INVEN file, with lines 150, 170, 200 and 230 changed. Make the changes to lines 210
and 280 to print the quantity:

{a) 100 REWM INVEN2 RANDOM FILE PRINT
110
120 REM VARIABLES USED
130 REM NF$ = PRODUCT NUMBER(6)
140 REM DF$ = DESCRIPTION(20)
150 REM QF$ = QUANTITY (SINGLE PREC)
160 REM FILES USED
170 REM INVEN2 = R-A FILE

continued on next page

244 DATA FILE PROGRAMMING IN BASIC

180
190
200
210

220
230

REM INITIALIZATION
OPEN "R", 1, "INVEN2"

240

250
260
270
280

290
300
310
320
330

:REM FIELD
THE BUFFER
PRINT "ITEM #", "DESCRIPTION", "GQUANTITY"
REM READ THE FILE/PRINT REPORT
IF EOF(1) THEN 320
GET 1
REM PRINT
BUFFER DATA
GOTO 260
REM CLLOSE FILE
CLOSE 1
FIELD 1, 6 AS NF$, 20 AS DF$, 4 AS QFS

(@ =210
280

PRINT NF$, DF$, CVS(QFs$)

OR LINE 280 CAN BE DONE IN TWO STATEMENTS:

280
285

LET Q@ = CVS(QFs$)
PRINT NF3%, DFs, Q

RANDOM ACCESS FILE UTILITY PROGRAMS

Having covered the essentials for using random access files, let’s write two file utility
programs to further your understanding and provide models for similar programs you

can write.

The first program simply copies the data from one random access file into another
random access file, record for record. The data are both alphabetic and numeric.
Follow these steps to create a random access file copying program:

(1
(2)

(3)
4

(5)

Open the original file (the one to be copied).

Open the file to be copied into. Use a different buffer number from step

.

FIELD the buffer for the step (1) file.

FIELD the buffer for the step (2) file. Use different variable names than in

step (3), but use identical data structure or field format.

In a FOR NEXT loop with LOF for the upper limit to the FOR control

variable,

(a) Input a dataset from the original file.

(b) Reassign the strings assigned to variables of the original file to the
fielded variables for the copy.

(c) Print the reassigned dataset to the copy file.

RANDOM ACCESS DATA FILES 245

(6) Close the files.

Here is the introductory module:

100 REM R—-A FILE COPY

110 =

120 REM VARIABLES USED

130 REM GF$ = FF$ = (20)
140 REM SF$ = RF$ = (8)
145 REM QF$ = PFs$ = (4)
150 REM MF$ = NF$ = (30)
160

170 REM FILES USED

180 REM MASTER = R—~A FILE 70 BE COPIED
190 REM STOREL = FILE CQPY
200 =

Go back to page 228 and write the program to create the file named MASTER, of
which our example program will make a copy. Also write the companion program to
display MASTER.

Notice how line 130 indicates the variable and field size used in the program.
This format indicates the equivalent variables in the two files involved in the program,
the file copied from and the file copied to. Varable GFS$ in file 1 is equivalent to
FF$ in file 2, and both have the same maximum length (twenty characters).

Complete the following program module to initialize the two files. Fill in lines
220, 230, 240, and 250.

(a) 200 -
210 REM FILE INITIALIZATION
220 :REM OPEN
MASTER
230 :REM OPEN
STORE1
240 :REM FIELD
BUFFER 1
250 :REM FIELD
BUFFER 2
260
(a) 200 :
210 REM FILE INITIALIZATION

220 OPEN "R", 1, "MASTER"
230 OPEN "R", 2, "STOREI"
240 FIELD 1, 20 AS GFS, 8 AS SFS$, 4 AS QFS$, 30 AS MF$

250 FIELD 2, 20 AS FF$, 8 AS RF$, 4 AS PF$, 30 AS NF$
260

246 DATA FILE PROGRAMMING IN BASIC

In the final part of the program, the data are read from file 1 and then assigned
into buffer number 2 and PUT to file 2. You have six statements to complete; lines
290, 300, 310, 320, 330, and 340.

(a) 260 :
270 REM COPY FILE

280 FOR R = 1 TO LOF(1)
290 :REM READ FROM MASTER FILE

300 ;REM MOVE DATA TO BUFFER 2
310

320

330

340 :REM PRINT TO FILE 2

350 NEXT R

360 CLOSE 1,2

370 PRINT "COPY COMPLETE"

(a) 260 :
270 REM COPY FILE
280 FOR R = 1 TO LOF(1)
290 GET 1

300 LSET FF$ = GF$
310 LSET RF$ = SF$

320 LSET PF$ = QFs$

330 LSET NF$ = MF$

340 PUT 2

350 NEXT R

360 CLOSE 1,2

370 PRINT "COPY COMPLETE"

You probably found completing that program easy. Random access files are easy
to manipulate, once you get the hang of it.
Following is the complete program:

100 REM R—A FILE COPY

110

120 REM VARIABLES USED

130 REM GF$ = FF$ = (20)
140 REM SF$ = RF$ = (8)
145 REM QF$ = PF$ = (4)
150 REM MF$ = NF$ = (30)
160 =

170 REM FILES USED

180 REM MASTER = R~A FILE TO BE COPIED
190 REM STORE1l = FILE COPY
200

210 REM FILE INITIALIZATION

220 OPEN "R", 1, "MASTER"

230 OPEN "R", 2, "STOREL"

240 FIELD 1, 20 AS GFS$, 8 AS SF$, 4 AS QF$, 30 AS MFS$
250 FIELD 2, 20 AS FF$, 8 AS RF$, 4 AS PF$%, 30 AS NFs$
260

RANDOM ACCESS DATA FILES 247

270 REM COPY FILE
280 FOR R = 1 TO LOF(1)
290 GET 1

300 LSET FFs$ = GF3%

310 LSET RF3$ = SFs

320 LLSET PFs$ = QFs$

330 LSET NF3$ = MFs3

340 PUT 2
350 NEXT R

360 CLOSE 1,2

370 PRINT "COPY COMPLETE"

(a) Check your understanding of the file copying program by filling in the correspond-
ing program line number(s) for each step in the following outline:

(1) Open the original file (the one to be copied).

(2) Open the file to be copied into. Use a different buffer number from step (1).

(3) FIELD the buffer for the step (1) file.
(4) FIELD the buffer for the step (2) file. Use different variable names than in step

(3), but use identical data structure or field format.

(5) Ina FOR NEXT loop with LOF for the upper limit to the FOR control variable,

(a) Input a dataset from the original file.

(b) Reassign the strings assigned to variables of the original file to the fielded

variables for the copy.
(c) Print the reassigned dataset to the copy file.
(6) Close the files.

(a) (1) 220

(2) 230

(3) 240

4) 250

(5) 280 (FOR statement) and 350 (NEXT statement)
(8 290
(b) lines 300 to 330
(c) 340

(6) 360

248 DATA FILE PROGRAMMING IN BASIC

Now let’s consider a versatile utility program that allows a number of options

for changing the data in a random access file (in particular, the one created earlier in
this chapter called INVEN). For simplicity, let’s use the version that contains only two
data items per record: the code number (six characters) and the description (twenty
characters maximum). You want the program to display the datasets in the file, one
record at a time, and allow the user the following options:

(1)
@
3
(4)
(%)

(6)
(7)
(®)
©
(10)
(11)
(12)

(13)

(14)

(15)

1 — Change both the code number and description.
2 — Change the code number only.

3 — Change the description only.

4 — Delete the information in this record.

5 — No change for this record.

Follow these steps:

Open the file.

Field the buffer.

Assign R, the record pointer variable (record counter), an initial value of zero.

Increase the current value of R by one.

Check the value of R against the length of file value plus one to see whether the

last record in the file has already been retrieved. The comparison is IF R = LOF

(1) + 1 THEN step (19), where the file is closed. Note that if you used R =

LOF(1) for the comparison, and the comparison is true, the last record (where

the file pointer is located) is not processed through the rest of the program.

Retrieve the dataset in record number R.

Clear the display screen.

Display the iterns in the dataset.

Display the “menu” choices for the user.

Ask the user to input a choice from the “menu.”

Check the entry for legal “‘menu” options.

Design subroutine one:

(a) Enter change for code number,

(b) Data entry checks.

(c) Assign entry to correct buffer variable.

(d) Return.

Design subroutine two:

(a) Enter change for description.

(b) Data entry checks.

(c) Assign entry to correct buffer variable.

(d) Return.

For “menu” option 1:

(a) Go to subroutine one.

(b) Go to subroutine two.

(c) Place the changed dataset into the same record from which the old dataset
was retrieved.

(&) Go back to step (4).

For “menu” option 2, follow steps (14) (a), (c), and (d).

RANDOM ACCESS DATA FILES

249

(16) For “menu” option 3, follow steps (14) (b), (c), and (d).
(17) For “menu” option 4:
(a) Assign null strings to all buffer variables.
(b) Follow steps (14) (c) and (d).
(18) For “menu” option 5, merely go back to step (4).
(19) Display the message END OF DATA IN THIS FILE and close the file.

Here is the complete program:

100 REM INVEN FILE EDITOR
110

120 REM VARIABLES USED

130 REM Cs, CF$ = PART NUMBER (6)
140 REM D$, DF$ = DESCRIPTION (20)
150 REM R$ = RESPONSE VARIABLE
160 REM R = RECORD NUMBER

170 =

180 REM FILES USED

190 REM INVEN - RA FILE

200 :

210 REM INITIALIZE

220 QPEN "R", 1, "INVEN"

230 FIELD 1, 6 AS CF$, 20 AS DFS$

240

250 LET R = 0

260 LET R = R + 1

270 IF R = LOF(1) + 1 THEN 480

280 GET 1, R

290 :

300 CLS

310 PRINT CF$%, DFs$
320 PRINT "ENTER ONE OF THE FOLLOWING OPTIONS:"

330 PRINT "1 CHANGE ALL (BOTH CODE AND DESCRIPTION)"

340 PRINT "2 CHANGE CODE oONLY"

350 PRINT "3 CHANGE DESCRIPTION ONLY"

360 PRINT "4 DELETE ITEM FROM FILE"

370 PRINT "5 NO CHANGE FQOR THIS DATA"

380 :

390 LINE INPUT "ENTER YOUR CHOICE FROM THE OPTIONS ABOVE:"; RS$

400 IF VAL(R$) <1 OR VAL(RS$) >5 THEN PRINT "ENTER NUMBER 1-5 ONLY

PLEASE": GOTO 390

410 IF VAL(R$) = 1 THEN GOSUB S20 :60SUB 570 :PUT 1,R : GOTO 260

420 IF VAL(RS$) = 2 THEN GOSUB 520 :PUT 1,R: GOTO 260

430 IF VAL(R$) = 3 THEN GOSUB 570 :PUT 1,R: GOTO 260

440 IF VAL(RS$S) = 4 THEN LSET CF$ = "": _SET DF$ = "".pPUT 1,R:
GOTQ 260

450 IF VAL(RS$) = 5 THEN 260

460 PRINT "PLEASE ENTER 1-5 ONLY": GOTO 260

470

480 PRINT "END OF DATA IN THIS FILE"
490 CLOSE 1

500 GOTO 620

510 =

520 LINE INPUT "ENTER NEW CODE #:"; Cs
530 REM DATA ENTRY CHECKS

540 LSET CF$ = C3%

550 RETURN

560 :

continued on next page

250 DATA FILE PROGRAMMING IN BASIC

570 LINE INPUT "ENTER NEW DESCRIPTION:"; ‘os

580 REM DATA ENTRY TESTS

590 LSET DFS$ = DS

600 RETURN

610 :

620 END

(a) Write the corresponding program line number(s) for each step in the outline.

(1) Open the file.

{2) Field the buffer.

(3) Assign R, the record pointer variable (record counter), an initial value of zero.

(4) Increase the current value of R by one.

(5) Check the value of R against the length of file value plus one to see whether the
last record in the file has already been retrieved. The comparison is IF R =
LOF(1) + 1 THEN step (19), where the file is closed. Note that if you used R =
LOF(1) for the comparison, and the comparison is true, the last record (where
the file pointer is located) is not processed through the rest of the program.

(6) Retrieve the dataset in record number R.

(7) Clear the display screen.

(8) Display the items in the dataset.

(9) Display the “menu” choices for the user.

(10) Ask the user to input a choice from the “menu.”

(11) Check the entry for legal “menu’ options.

(12) Design subroutine one:

(a) Enter change for code number.
(b) Data entry checks.
(c) Assign entry to correct buffer variable.
(d) Return.
(13) Design subroutine two:

(a) Enter change for description.

(b) Data entry checks.

(c) Assign entry to correct buffer variable.
(d) Return.

RANDOM ACCESS DATA FILES 251

(14) For “menu” option 1:

(a) Go to subroutine one.

(b) Go to subroutine two.

(c) Place the changed dataset into the same record from which the old dataset

was retrived.

(d) Go back to step (4).

(15) For “menu” option 2, follow steps (14) (a), (¢), and (d).
(16) For “menu” option 3, follow steps (14) (b), (¢), and (d).

(17) For “menu” option 4:

(a) Assign null strings to all buffer variables.
(b) Follow steps (14) (c) and (d).

(18) For “menu” option 5, merely go back to step (4).
(19) Display the message END OF DATA IN THIS FILE and close the file.

(@ (1) 220 (13) (a) 570
(2) 230 (b) 580
(3) 250 (c) 590
(4) 260 (d) 600
(5) 270 (14) (a) 410
(6) 280 (b) 410
(7) 300 (c) 410
(8) 310 (d) 410
(9) 320-370 (15) 420
(10) 390 (16) 430
(11) 400 (17) (a) 440
(12) (a) 520 (b) 440

(b) 530 (18) 450
(c) 540 (19) 480
(d) 550

CONVERTING SEQUENTIAL FILES TO RANDOM ACCESS FILES

Another useful file utility program converts a sequential file to a random access file.
The procedure involves making a copy of the sequential file and placing one dataset
from the sequential file into one record in a random access file. If at some point you

252 DATA FILE PROGRAMMING IN BASIC

want to standardize your entire software collection or system into random access file
format, a program modeled on the one you are about to write would do the job.

The example is a small business-type application where a sequential file contains
data in this format:

Customer number = five-character string
Customer phone number = ten-character string
Credit status code = number from 1 to 10 (single precision value)
Current balance owed = numeric value (single precision value)

Create this sequential file by modifying the Chapter 4 Self-test problem 3. Name
this file CUST. The task is to copy a sequential data file into a random access file, one
dataset (as described above) per record. The outline of steps is as follows.

(1)
(2
(3)
(4)
(5)
(6)

(7)
®
®

Open the sequential data file as an input file.
Open the random access file into which the copy is to be made.
Field the random access file.
Check the sequential file for EOF and, if found, go to step (9).

Input a complete dataset from the sequential file.

Reassign the data items to fielded variables. Remember to make any

numeric data items in the dataset into the acceptable random access file
format.
Print the dataset to the random access file.
Repeat steps (4) to (8) until all data have been copied.
Close the files.

Here is the introductory and initializing module. You write lines 230, 240, and
250. Assume single precision values for credit status and current balance.

(a) 100 REM SEQ TO R-A FILE COPY
110 :
120 REM VARIABLES USED
130 REM N$ = CUST. # (5)
140 REM P$ = PHONE # (10)
150 REM C = CREDIT STATUS
160 REM B = BALANCE OWED
170 =
180 REM FILES USED
190 REM CUST = SEQ FILE
200 REM CUST1 = R~A FILE
210
220 REM FILE INITIALIZATION
230
240
250
260

(a) 230 oPEN "I", 1, "cusT"
240 OPEN "R", 2, "cusT1"
250 FIELD 2, 5 AS NF$, 10 AS PFs,

4 AS CFs,

:REM OPEN SEQ FILE
:REM OPEN R-A FILE
tREM FIELD BUFFER

4 AS BF$

RANDOM ACCESS DATA FILES 253

Note that the two numeric values are fielded as four-byte strings, since single
precision numbers were assumed. You could have used only two bytes for the credit
status since it is expressed as an integer, and you could have used eight bytes for the
current balance if you had assumed a double precision number (big business!).

In the next program section, fill in the blank at line 280 to test for end-of-file
for the sequential file and branch to line 420 if the end of file is found. Then fill in
line 290 to read one dataset from the sequential file.

(a) 260 :
270 REM READ SEQ FILE
280
290
300

:REM TEST EOF (1)
1 REM READ DATASET

(a) 260 :
270 REM READ SEQ FILE
280 IF EOF (1) THEN 420
290 INPUT #1, Ns, Ps, C, B
300 :

A GOTO loop causes the repeated execution of the program segment above,
reading one dataset at a time from the sequential file until the end of file marker is
encountered. When that happens, the task is complete.

Meanwhile, the first execution of the preceding program segment places one
dataset into buffer number 1. Next, the program must copy the data into buffer num-
ber 2 directly. The first such transfer statement has been completed. You complete
the others.

(a) 300 :
310 REM COPY DATA TO BUFFER
320 LSET NF$ = NS

330
340
350
360
(a) 300 :
310 REM COPY DATA TO BUFFER
320 LSET NF$ = NS
330 LSET PF$ = Ps
340 LSET CF$ = MKS3(C)
= MKSS(B)

350 L.SET BFS$
360

The final section of the program is all that remains to complete the utility ex-
ample. The program reads the sequential file and copies the data to the random access

254 DATA FILE PROGRAMMING IN BASIC

file buffer. Next the random access file buffer is to be copied into the random access
file itself (line 380, which is left for you to complete). Then the program goes back to
line 280 for more data, as shown by line 390. The close file operation is completed in
lines 410 to 430. You f{ill in line 380.

(a) 360 :
370 REM WRITE TO R~A FILE
380 :REM PRINT TO R-A FILE
390 GOTO 280
400 &

410 REM CLOSE FILES
420 CLOSE 1,2
430 PRINT "COPY COMPLETE"

(a) 380 PuT 2

You may have noticed that you do not have to use a record number in the GET
and PUT statements. For these applications, the current record counter provided
record numbers automatically. The next chapter contains programs where the auto-
matic record counter is not necessarily used.

Here is the complete sequential to the random access file conversion program:

100 REM SEQ TO R-A FILE COPY
110

120 REM VARIABLES USED

130 REM N$ = CUST. #(5)
140 REM P$ = PHONE # (10)
150 REM C = CREDIT STATUS
160 REM B = BALANCE OWED
170

180 REM FILES USED

190 REM CUST = SEQ FILE
200 REM CUST1 = R-A FILE
210

220 REM FILE INITIALIZATION
230 OPEN "I", 1, "cusT"

240 OPEN "R", 2, "cusT1"

250 FIELD 2, 5 AS NF$, 10 AS PF$, 4 AS CF$, 4 AS BFS
260

270 REM READ SEQ FILE

280 IF EOF(1) THEN 420

290 INPUT #1, N$, P$, C, B

300

310 REM COPY DATA TO BUFFER
320 LSET NFS$ = N$

330 LSET PF$ = P$

340 LSET CF$ = MKSS$(C)

350 LSET BF$ = MKS$(B)

360

370 REM WRITE TO R~A FILE
380 PUT 2

390 GOTO 280

RANDOM ACCESS DATA FILES 255

400

410 REM CLOSE FILES
420 CLOSE 1,2

430 PRINT "COPY COMPLETE"

(a) Check your understanding of the sequential file to random access file copying
procedure by writing the corresponding program line numbers for each step in the
outline: :

(1) Open the sequential data file as an input file.

(2) Open the random access file into which the copy is to be made.
(3) Field the random access file.

(4) Check the sequential file for EOF and, if found, go to step (9).

(5) Input a complete dataset from the sequential file.

(6) Reassign the data items to fielded variables.

(7) Print the dataset to the random access file.

(8) Repeat steps (4) to (8) until all data have been copied.

(9) Close the files.

(@) (1) 230 (6) lines 320 to 350
(2) 240 (7) 380
3) 250 (8) lines 280 to 390
(4) 280 (9) 420
(5) 290

A Technique for Changing the Order of Records
Within a Random Access File

The use of the record pointer value (record counter) in GET and PUT statements
provides a simple technique for moving datasets from one record position in the file
to another in the same file. By fielding the buffer so that the entire record is con-
sidered one dataset or data item with 256 characters, you can GET an entire record
from one place in the file (let’s say the last record in the file), and then PUT it into
another record (say a record whose dataset is no longer needed and is to be deleted
from the file).

420 FIELD 1, 256 AS F$
430 GET 1, LOF(1)
440 PUT 1, 43

256 DATA FILE PROGRAMMING IN BASIC

(a) What value is used in line 430 to retrieve the last record in a file?

(a) The value of the length of file (which is the same as the last record number in a
file).

A Universal Random Access File Display Program

In the little program below, the LOF function helps you go through a random access
file and displays every record in the file, regardless of how the data were fielded when
originally placed in the file.

10 LINE INPUT "NAME OF FILE YOU WANT DUMPED (DISPLAYED)"; AS
20 OPEN "R", 1, AS

30 FIELD 1, 256 AS BS

40 FOR R = 1 TO LOF(1)

50 GET 1, R

60 PRINT BS

70 NEXT R

For CRT display, you could include the “press any key to continue” technique
to control the pace of the display.

65 LINE INPUT ""; Cs

(a) In line 50, how is the record number to GET determined?

(a) By the FOR NEXT loop control variable (whose value goes from 1 to the value
of the length of file, which is the same as the last record number in the file).

RANDOM ACCESS DATA FILES 257

CHAPTER 7 SELF-TEST

1. Write a program to create a random access data file that contains the inventory of
products carried by an imaginary business. Each random access record contains the
following data for one item of inventory in the order shown below. Numbers in
parentheses indicate maximum string lengths. Since record space is not crucial, assume
single precision for values assigned to numeric variables, even though some could be
integer values.

P$ = product number (4)

D§ = description of inventory item (20)

S$ = supplier (20)

L = reorder point (how low the stock of item can be before reordering)
Y = reorder quantity

Q = quantity available (currently in stock)

C = cost (from supplier)

U = unit selling price (what the item is sold for)

Here is the introductory module:

100 REM PROB 7-1 SOLUTION

110 :

120 REM VARIABLES USED

130 REM P$,PBs = PROD. NO. (4)
140 REM D$,D0Bs% = DESCRIPTION(20)
150 REM S$,58% = SUPPLIER (20)
160 REM L,LB$% = RECORDER POINT
170 REM Y,YB$ = RECORDER QUANTITY
180 REM Q,QB% = QUANTITY

190 REM Cc,CB% = COST

200 REM U,uUBs$ = UNIT SELLING PRICE
210 R$ = USER RESPONSE

220 REM FILES USED

230 REM PRODUCTS R~A FILE

240 :

Using the program, create a random access file. Make up your own data for 20
records (inventory items) and enter them into the file. This file will be used in Chapter 8
examples and activities.

Use as much scratch paper as needed to draft your solution programs for all
problems in the self-test.

258 DATA FILE PROGRAMMING IN BASIC

2. Write two programs, one to create and another to read/display a sequential file
named POINT, which has two data items per dataset. The first data item is the product
number only from each dataset in PRODUCT, and the second data item is a value that
corresponds to the record number in the PRODUCT file where that product number is
stored. There should be exactly as many datasets in the sequential file POINT as there
are records in the random access file PRODUCT. Your file creating program must input
an entire dataset from the random access file named PRODUCT, while only the first
data item and the record number are output to the sequential file named POINT. This
file will be used in a Chapter 8 application.

3. Write a program to make a copy of the random access file that you transferred
from a sequential file in the last example program in Chapter 7. The copy should be
another random access file.

Here is the introductory module:

100
110
120
130
140
150
150
170
180
190
200

REM
REM
REM
REM
REM
REM
REM
REM

R-A TO R—A FILE COPY

VARIABLES USED
NB$,NC$ = CUST. #(5)

PB$,PC$ = PHONE # (10)
CBs%,CF$ = CREDIT STATUS
BB$,BF$ = B-LANCE OWED

FILES USED
CUST = R—-A FILE
CUST1 = R-A FILE

RANDOM ACCESS DATA FILES 259

4. Write a program or program module to display the contents of the original data

file and the copy in the previous problem (3), for verification of the completeness

and accuracy of the copy. The program should display the data in record 1 of the
original file, and then the data from record 1 in the file copy, then the data from
record 2 in the original file, followed by the data from record 2 in the copy, and so on
to the end of the files.

5. For application in Chapter 8, write one program to create and then read/display a
sequential data file with this dataset:

C = Check number or deposit slip number

Y$ = date (8) (format: xx/xx/xx)

W$ = party to whom check is written, or source of deposit (20)
A$ = account number from chart of accounts (4)

D = dollar amount

For your financial records, you create a file at the beginning of each month containing
last month’s money transactions, as shown in your checkbook register of checks written
and deposits made. Since you will have a separate data file for each month of the year,
use the LETTER# file name creating technique (see page 133 in the Chapter 4 Self-Test
problem 6). The file named MONTHI is all January checks and deposits, MONTH2 is
all February checks and deposits, etc. Use your own checkbook register (or your
imagination) to create one or more MONTH# sequential files. Select A$ (the
appropriate account number) for each dataset from the chart of accounts on page 272.

260 DATA FILE PROGRAMMING IN BASIC

6. Write one program to create three different random access files which contain your
budget estimates for the coming year. Your budget has forty-six categories of income
and expenses as listed in the chart of accounts on page 272. Your budget files are named
BUDGET!, BUDGET2, and BUDGET3, and you use the LETTER# technique for
creating the file names. BUDGET] will have six records (account chart numbers 1001
to 1006); BUDGET?2 will have twenty-eight records (account chart numbers 2001 to
2028); and BUDGET?3 will have twelve records (3001 to 3012). The dataset is as
follows:

NF$ = Account Chart Number (4)

DF$ = Account name from Chart of Accounts (20)

BF$ = Budgeted amount for this category (annual budget estimate) (4)
EF$ = Amount spent or earned (year-to-date) (4)

Use your program to create, then read/display, three separate BUDGET# files as you
would at the beginning of a new year. using as data the account chart numbers and
names (page 272), your own values for budgeted amount, and zero for the amount
expended or earned to date. The BUDGET# files will be used in Chapter 8.

RANDOM ACCESS DATA FILES 261

Answer Key
Also see Final Self-test Problem 5
100 REM PROB 7-1
110
120 REM VARIABLES USED
130 REM Ps,PBS = PROD. ND. (4)
140 REM D$,DB% = DESCRIPTION(20)
150 REM S$,SB%$ = SUPPLIER(20)
160 REM L,LB$ = REORDER POINT
170 REM Y,YB$ = REORDER QUANTITY
180 REM Q,QB8% = QUANTITY
190 REM C,CB3% = COST
200 REM U,uUBs = UNIT SELLING PRICE
210 REM R$ = USER RESPONSE TO CONTINUE ENTRIES
220 :
230 REM FILES USED
240 REM PRODUCT — RA FIULE
250 REM INITIALIZE

260 CLEAR 1000

270 OPEN "R", 1, "PRODuUCT"

280 FIELD 1, 4 AS PB$, 20 AS DBS%, 20 AS SBs, 4 AS LB$, 4 AS YB%, 4 AS
GBs$, 4 A3 CBs, &4 AS UBS

290 :
300 REM DATA ENTRY MODULE-DATA ENTRY TESTS OMITTED
310 LINE INPUT "ENTER PRODUCT NUMBER (4 DIGITS):"; P3

320 REM*** DATA ENTRY TESTS GO HERE

330 LINE INPUT "ENTER PRODUCT DESCRIPTION (20 CHAR. MAX,)"; D$
340 REM *** DATA ENTRY TESTS GO HERE

350 LINE INPUT "ENTER NAME OF SUPPLIER (20 CHAR. MAX.)"; S$%
360 REM *** DATA ENTRY TESTS GO HERE

370 INPUT "REORDER POINT"; L

380 REM *** DATA ENTRY TESTS GO HERE

390 INPUT "REORDER QUANTITY"; Y

400 REM *** DATA ENTRY TESTS GO HERE

410 INPUT "QUANTITY NOW IN STOCK"; Q

420 REM *** DATA ENTRY TESTS GO HERE

430 INPUT "WHOLESALE COST"; C

440 REM *** DATA ENTRY TESTS GO HERE

450 INPUT "UNIT SELLING PRICE"; U

460 REM *** DATA ENTRY TESTS GO HERE

470 REM *** DATA ENTRY CHECKS DELETED TO SHOW PROGRAM STRUTURE
480

490 REM MOVE VALUES TCO BUFFER

500 LSET PB% = P3$

510 LSET DB3% = D$

520 LSET SB$ = S$

530 LSET LB$ = MKS$(L)

540 LSET YBS = MKSS(Y)

550 LSET QBS$ = MKS$(Q)

560 LSET CBS$ = MKS$(C)

570 LSET UBS% = MKSS$(U)

580

590 PUT 1

600

610 LINE INPUT "MORE DATA (TYPE YES OR NO)?"; RS
620 IF LEFTS$(R$,1) = "Y" THEN CLS : GOTO 310

630 :

640 REM CLOSE FILE

650 CLOSE

660 PRINT "FILE CLOSED."

670 END

262 DATA FILE PROGRAMMING IN BASIC

2.100
110

120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290

300:

310
320
330

340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540

550

REM PROB 7-2 SOLUTION

REM CREATE A POINTER FILE NAMED 'POINT' FOR RANDCM
ACCESS FILE 'PRODUCT'

REM VARIABLES USED

REM P$ = PROD. NO. (4)

REM D$ = DESCRIPTION (20)

REM $% = NAME OF SUPPLIER (20)

REM L = REORDER POINT (4)

REM Y = REORDER QUANTITY (4)

REM Q = QUANTITY IN STOCK (4)

REM C = WHOLESALE COST (4)

REM U = UNIT SELLING PRICE (4)

REM R$ = USER RESPONSE VARIABLE

REM R = RECORD NUMBER

REM FILES USED

REM RANDOM ACCESS FILE NAME: PRODUCT

REM DATASET FORMAT: P$%,D$%,5%,L,Y,Q,C,U

REM SEQUENTIAL FILE NAME: POINT

REM DATASET FORMAT: P$,R

REM INITIALIZE

orPeEN "R", 1, "PRODUCT"

FIELD 1, 4 AS PF$, 20 AS DF$, 20 AS SF$, 4 AS LFS,

4 AS YF$, &4 AS QF$, 4 AS CF$, 4 AS UFS
orPEN "O", 2, "PODINT"

REM READ 'PRODUCT' AND WRITE 'POINT'
FOR R = 1 TO LOF(1)

GET 1, R

PRINT#2, PBs, ","; R

NEXT R

REM CLDSE FILES
CLOSE
PRINT: PRINT "FILES cLOSED"

REM READ/DISPLAY 'POINT'
OoPEN "I", 1, "POINT"

IF EQF(1) THEN 540

INPUT#1, P$, R

PRINT P$; R,

GOTO 480

REM CLOSE FILE
CL.OSE

”n
PRINT: PRINT "ALL":; R; "DATASETS DISPLAYED AND FILE

CLOSED"

RANDOM ACCESS DATA FILES

263

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320

REM PROB 7-3 SOLUTION

REM R-A TO R—-A FILE COPY

REM VARIABLES USED

REM NB$, NC$% = CUST. #(5)
REM PB$, PC% = PHONE # (10)
REM cB%, CF$ = CREDIT STATUS
REM BBs$, BF$ = BALANCE OWED
REM FILES USED

REM CUST]l = R—A FILE

REM CUST2 = R-~A FILE

REM INITIALIZE

OPEN "R", 1, "cCusT1"
oPEN "R", 2, "cusT2"
FIELD 1, 5 AS NBS$, 10 AS PBS, 4 AS CB3%, 4 AS BBS
FIELD 2, 5 AS NC$, 10 AS PC$, 4 AS CF3$, 4 AS BF$

REM MAKE COPY

FOR X = 1 TO LOF(1)
GET 1

LSET NC3$ = NBS$

LSET PC$ = PBS$

LSET CF$ = CBS$

LSET BF$ = BBS$

PUT 2
NEXT X

CLOSE 1,2

PRINT "FILES CLOSED. COPY COMPLETE."
END

REM PROB 7~4 SOLUTION

REM RA FILE PRINT

REM VARIABLES USED

REM NBS, NC$ = CUST. #(5)

REM PB$, PC$ = PHONE # (10)
REM CB$, CF$ = CREDIT STATUS
REM BB%, BF$ = BALANCE OWED
REM FILES USED

REM CUST = R-A FILE

REM CUSTL = R—-A FILE

REM INITIALIZE

OPEN "R", 1, "cCusT"
OPEN "R", 2, "cusTi"
FIELD 1, S AS NBS, 10 AS PBS, 4 AS CB$, 4 AS BBS$
FIELD 2, 5 AS NC$, 10 AS PCS$, 4 AS CF$, 4 AS BFS$

REM DISPLAY CONTENTS
FOR X = 1 T0 LOF(1)

continued on next page

264 DATA FILE PROGRAMMING IN BASIC

330 PRINT "FILE 1", "FILE 2"

340 GET 1: GET 2

350 PRINT NBS$, NC$

360 PRINT PB$, PC$

370 PRINT CVS(CB$), CVS(CFs)

380 PRINT CVS(BBs$), CVS(BFS$)

390 LINE INPUT "PRESS ENTER FOR NEXT ITEM"; R$
400 NEXT X

410 :

420 CLOSE

430 PRINT: PRINT "ALL ITEMS DISPLAYED AND FILES CLOSED."

440 END

5. 100 REM PROB 7-5 SOLUTION

110 REM CREATE THEN READ/DISPLAY 'MONTH#' FILES OF
CHECKBOOK TRANSACTIONS; REFER TO CHART OF ACCOUNT
PAGE 272

120 :

130 REM VARIABLES USED

140 REM C = CHECK OR DEPOSIT SLIP NUMBER

150 REM Y$ = DATE (8) (FORMAT: XX/XX/XX)

160 REM W$ = PARTY TO WHOM CHECK IS WRITTEN OR SOURCE

OF DEPOSIT (20)

170 REM A$ = ACCOUNT NUMBER FROM CHART OF ACCOUNTS (4)

180 REM D = DOLLAR AMOUNT

190 :

200 REM FILE USED

210 REM SEQUENTIAL FILE NAME: MONTH#, WHERE '#' 1S USER
SELECTED (1 TO 12)

220 REM DATASET FORMAT: C, Y$, W$, A$, D

230

240 REM INITIALIZE

250 LINE INPUT "WHICH MONTH (1 To 12)"; F$%
260 IF VAL(F$) < 1 DR VAL(FS$) > 12 THEN PRINT : PRINT
"ENTER A NUMBER BETWEEN 1 AND 12, WHERE 1 = JAN, 2

ETc.": PRINT : GDTO 250
270 LET F$ = "MONTH" F$
280 orPEN "GQ", 1, Fs
290 :
300 REM DATA ENTRY MODULE
310 INPUT "CHECK OR DEPQOSIT SLIP NUMBER"; C
320 REM DATA ENTRY TESTS GO HERE
330 LINE INPUT "DATE OF CHECK OR DEPOSIT (XX/XX/xX)?";
340 REM DATA ENTRY TESTS GO HERE

FEB,

Y$

350 LINE INPUT "PARTY TO WHOM CHECK IS WRITTEN OR SOURCE OF

DEPOSIT?"; Ws

360 REM DATA ENTRY TESTS GO HERE

370 LINE INPUT "CHART OF ACCOUNTS NUMBER FOR THIS
TRANSACTION?"; AS

380 IF LEN(A$) <> 4 THEN PRINT : PRINT "CHART OF ACCOUNTS
NUMBERS ARE 4 DIGITS. PLEASE REENTER" : PRINT : GOTO 370
390 IF VAL(A3S) < 1001 OR VAL{A$) > 3012 THEN PRINT : PRINT

"ACCOUNT # "; A$; "DDES NOT EXIST. PLEASE REENTER":
PRINT : GOTO 370
400 REM OTHER DATA ENTRY TESTS GO HERE

410 INPUT "DOLLAR AMOUNT"; D

continued on next page

RANDOM ACCESS DATA FILES 265

420
430
440
450
460
470

480
490
500
510
520
530
540

550
560

570
580
590
600
610
620
630
640
650
660
670
680
690

100
110
120
130
140
150
160

170
180
190
200
210
220

230
240
250
260

270
280
290
300
310
320
330

REM DATA ENTRY TESTS GO HERE
REM WRITE TO FILE
PRINT#1, C3; ",": vs; ","; ws; ","; aAas; ",": D

LINE INPUT "ANOTHER TRANSACTION ENTRY (Y OR N)?": RS
IF LEFT$(R$,1) <> "N" AND LEFTS$(RS$,1) <> "vY" THEN PRINT;

PRINT "ENTER 'Y' FOR YES OR 'N' FOR NO" : PRINT : GOTO 460
IF LEFTS(RS,1) = "Y"THEN 310

REM CLOSE FILE

CLOSE

PRINT : PRINT "FILE CLOSED" : PRINT

LINE INPUT "DISPLAY CONTENTS QF FILE (Y OR N)?"; RS

REM Y OR N CHECK GOES HERE

IF R$ = "N" THEN END

DPEN "I, 1, F$

IF ECOF(1) THEN 680
INPUT#1, O, Y$. W$, AS. D

PRINT "CHECK OR DEPOSIT #: ": C

PRINT "DATE WRITTEN OR RECEIVED: ": Y$
PRINT "WRITTEN TO OR RECEIVED FROM: "; ws
PRINT "ACCOUNT CHART NUMBER: "; AS$

PRINT "AMOUNT: s$"; D

PRINT

LINE INPUT "PRESS 'ENTER' FOR NEXT DATASET": RS
PRINT : GDTO 560

REM CLOSE FILE
CLOSE
PRINT : PRINT "FILE DISPLAYED AND CLOSED"

REM PROB 7-6 SOLUTION

REM CREATE THEN READ/DISPLAY R-A FILE 'BUDGET#'

REM VARIABIL.ES USED

REM N$ = NF$ = ACCOUNT CHART NUMBER (4)

REM D$ = DF$ = ACCOUNT NAME FROM CHART OF ACCOUNTS (20)

REM Bs = BF$ = BUDGETED AMOUNT OR EXPECTED INCOME FOR
THIS CATEGORY (YEARLY BUDGET ESTIMATE) (4)

REM E$ = EF$ = AMOUNT SPENT OR EARNED (YEAR-TO-DATE) (4)

REM F$ = FILE NAME

REM R$ = USER RESPONSE VARIABLE

REM R = RECORD NUMBER

REM FILE USED

REM RANDOM ACCESS FILE NAME; BUDGET# (WHERE # = 1, 2, OR

3 AND IS USER SELECTED)

REM INITIALIZE
LINE INPUT "WHICH BUDGET# FILE (1, 2, OR 3)?2"; F$
IF VAL(F$) < 1 OR VAL(F$) > 3 THEN PRINT : PRINT "ENTER ONE

DIGIT NUMBER 1, 2, OR 3 ONLY" : PRINT : GOTO 250
IF F$ = "1" THEN F = 6

IF F$ = "2" THEN F = 28

IF F$ = "3" THEN F = 12

LET F$ = "BUDGET" Fs

OPEN "R", 1, F3

FIELD 1, 4 AS NF$, 20 AS DF3$, 4 AS BF3$, 4 AS EFS$

continued on next page

266 DATA FILE PROGRAMMING IN BASIC

340 REM DATA ENTRY MODULE

350 LIMNE INPUT "ENTER CHART OF ACCOUNTS NUMBER:"; N$

360 IF LEN(N$) <> &4 THEN PRINT : PRINT "ENTRY ERROR. "; Ns$; "IS
NOT A 4 DIGIT ACCOUNT NUMBER." : PRINT : GOTO 350

370 IF LEFTS$(N,1) <> RIGHT$(F$,1) THEN PRINT : PRINT "ENTRY ERROR.
"y NS$; "IS NOT AN ACCOUNT NUMBER FOR "; F$: PRINT : GOTO 350

380 IF VAL(RIGHTS(NS$,3)) < 1 OR VAL(RIGHTS(N$,3)) > F THEN PRINT
PRINT "ENTRY ERROR." ; N$; "IS NOT AN ACCOUNT NUMBER FOR" ;
F$: PRINT : GOTO 350

390 LINE INPUT "ENTER ACCOUNT 'NAME:"; Ds

400 IF LEN(DS$) > 20 THEN PRINT : PRINT "ENTRY TOO LONG.
ABBREVIATE T0O 20 CHARACTERS DR LESS.": PRINT : GOTO 390

410 REM OTHER ENTRY TESTS GO HERE

420 LINE INPUT "ENTER BUDGETED AMOUNT OR EXPECTED INCOME FOR
THIS FOR THIS CATEGORY FOR THIS YEAR:"; BS$

430 REM DATA ENTRY TESTS GO HERE

440 LINE INPUT "AMDUNT SPENT DR EARNED (YEAR TO DATE):"; ES$

450 REM DATA ENTRY TESTS GO HERE

460

470 REM WRITE TO FILE

480 LSET NF$ = N$

490 LSET DF$ = D$

500 LSET BF$ = MKSS(VAL(BS$))

510 LSET EF$ = MKS$(VAL(ES$))

520 PUT 1, VAL(RIGHTS$S(NS$,3))

530 PRINT

540 LINE INPUT "ANOTHER ENTRY (Y OR N)?"; RS

550 IF R3% <> "Y" AND R$ <> "N" THEN PRINT : PRINT "ENTER 'Y' FOR

YES OR 'N' FOR NO" : PRINT : GOTO 540
560 IF R$ = "Y" THEN 350
570 :
580 REM CLOSE FILE
590 CLOSE
600 PRINT : PRINT "FILE CLOSED"™ : PRINT
610
620 LLINE INPUT "DISPLAY THIS FILE (Y OR N)?"; R$
630 REM Y OR N TEST GOES HERE
640 IF R$ = "N" THEN END
650
660 REM READ/DISPLAY MODULE
670 OPEN "R", 1, Fs

680 FIELD 1, 4 AS NF$, 20 AS DFS$, 4 AS BFS$, 4 AS EFS$
690 FOR R = 1 TO EOF(1)

700 GET 1, R

710 PRINT

720 PRINT "ACCT NUMBER: "; NF$

730 PRINT "ACCT NAME: "; DFs

740 PRINT "BUDGET AMOUNT: $'; CVS(BFS)
750 PRINT "YEAR-TO-DATE: $; CVS(EFS$)

760 PRINT
770 LINE INPUT "PRESS 'ENTER' TO DISCPLAY NEXT CATEGORY ; RS
780 NEXT R

790

800 REM CLOSE FILE

810 CLOSE

820 PRINT : PRINT "ALL DATA DISPLAYED AND FILE CLOSED.'

¥

CHAPTER EIGHT

Random Access File
Applications

Objectives: In this chapter you will learn expanded techniques for random access data
file applications and how to use sequential “pointer” data files as an index for a random
access data file.

Two file applications are designed to be somewhat typical of the programs you
might encounter as you design your own computer software systems and write your
own programs. The programs are not really long, as you might expect, but they are
only one component of a larger software system composed of many programs.

The first application is an inventory control application that uses both a sequential
file and a random access file in the same program. The objective is to show how to use
a sequential “pointer” file and how to change data located in a random access file
record. The application could as well have been a mailing list, a credit information file,
or any sort of master file application.

In this case, all the data regarding the inventory of products carried are stored in
a random access file(s). Each random access record contains the following data for one
item of inventory in the order shown below:

P$ = PROD # (4)

D% = DESCRIPTION (20)
S$ = SUPPLIER (20)

L = REORDER POINT

Y = REORDER QUANTITY

G = QUANTITY AVAILABLE
C = COSsT

U = UNIT SELLING PRICE

If you wanted to change some data for product number 9827, you would have
to search through the random access file records one at a time, until you found
product number 9827. You could then make your changes — a very inefficient use of
random access files. To increase efficiency, you could add a sequential “pointer” file
that contains the product numbers (in a string variable) followed by the record number
where the proper datum is located in the random access file. To change the cost and
selling price data in the random access file, follow these steps:

267

268 DATA FILE PROGRAMMING IN BASIC

Enter product number and new cost and price data.
Quickly search the sequential pointer file for the product
number that gives the record location.

3. Access the correct random access record.

4. Make the changes in the random access file record.

b —

It looks easy, but there are a few “tricks.” Here is the first part of the program.
Read it through carefully.

100 REM R—A/SEQ INVENTORY FILE PROGRAM

103 REM THIS PROGRAM PERMITS THE USER TO CHANGE THE COST AND

105 REM UNIT SELLING PRICE FOR AN EXISTING INVENTORY ITEM IN FILE.
110 =

120 REM VARIABLES USED

130 REM R$ = DATA ENTRY STRING
140 REM P1% = PROD # (4)

150 REM R = RECORD #

160 REM Ps = PROD # (4)

170 REM D$ = DESCRIPTION (20)
180 REM S$ = SUPPLIER (20)

190 REM L = REDRDER POINT

200 REM Y = REORDER QUANTITY

210 REM Q = QUANTITY AVAILABLE
220 REM C = COST

230 REM U = UNIT SELLING PRICE
240

250 s

260 REM FILES USED

270 REM POINT = SEQ POINTER FILE
280 REM INVEN = R-A FILE

290

300 REM FILE INITIALIZATION

310 oPeEN "I", 1, "POINT"

320 OPEN "R", 2, "INVEN"
330 FIELD 2, 4 AS PF$, 20 AS DF$, 20 AS SF$, 4 AS LF$, 4 AS YF$, 4 AS
QF$, 4 AS CF$, 4 AS UFS

340

350 REM DATA ENTRY MODULE

360 CLS

370 LINE INPUT "ENTER PROD #:"; RS

380 REM DATA ENTRY TESTS

390 INPUT "ENTER NEW COST:"; C

400 REM DATA ENTRY TESTS

410 INPUT "ENTER NEW SELLING PRICE"; U
420 REM DATA ENTRY TESTS

430 :

All data have been entered and tested. It is time to search the sequential file for
the record location of the data in the random access file. On the chance that the
operator made an entry error that escaped the error tests, include an error trap in case
you read all the way to the end of the sequential file and find no matching product
number. This error message is shown below in lines 690 through 700. You fill in lines
450, 460, and 470.

(a) 430
440 REM SEARCH POINTER FILE

RANDOM ACCESS FILE APPLICATIONS 269

450 :REM EOF TO 690

460 :REM READ THE SEQ FILE

470 :REM CHECK ENTERED #
WITH FILE #

480 :REM USE THIS LINE IF

YOU NEED IT.
670 :
680 REM ERROR TRAPS
690 PRINT "THIS PRODUCT # NOT IN OUR FILE"
700 PRINT "CHECK YOUR NUMBERS AND REENTER"
710 GOTO 610 :REM RETURN TO MORE DATA TEST
720 :

(b) In which variable is the record number of the random access file located?

(@) 430 :
440 REM SEARCH POINTER FILE
450 IF EOF(1) THEN 690
460 INPUT #1, P1%, R
470 IF P1% <> RS THEN 450
480

(b) R

Before you get the record contents and copy them to the buffer, test that the
record number in the sequential file is valid in the random access file (better safe than
sorry!). Test record validity using the LOF function. The error message is shown below
in lines 730 and 740. You fill in lines 500 and 510.

(a) 480
490 REM GET RECORD FROM R-A FILE
500 :REM LOF TEST FOR RECORD #

510 tREM GET THE RECORD
520

680 REM ERROR TRAPS

720

730 PRINT "RECORD # ERROR IN POINTER FILE"

740 PRINT "PROCEED TO NEXT ENTRY AND NOTIFY supPv"

750 GOTO 610 :REM RETURN TO MORE DATA TEST
(a) 480 :
490 REM GET RECORD FROM R-A FILE

500 IF R > LOF(2) THEN 730
510 GET 2, R
520

270 DATA FILE PROGRAMMING IN BASIC

There is not much else to do.

(2) What is the next step before you copy the buffer back out to the file?

(a) Convert the cost and price numbers to string variables and place them in the
buffer.

Complete lines 540, 550, and 580 below. You can refer back to the field state-
ment in line 330 for proper placement of the data.

(a) szo0
530
540
550

560
570
580

590

(a) s20
530
540
550
560
570
580
590

REM COPY CHANGES TO BUFFER
-tREM
:REM
REM COPY BUFFER BACK TO FILE
: REM
REM COPY CHANGES TO BUFFER
LSET CF$ = MKS$(C)
LSET UF$ = MKS3$(U)
REM COPY BUFFER BACK TO FILE
PUT 2, R

CorPY C
TO BUFFER

COPY U
TO BUFFER

COPY BUFFER
TO FILE

If line 580 said only 580 PUT 2, you made a serious error. You would have
placed the data in the NEXT file record beyond R (R + 1). Each time a GET or PUT
statement is executed, the current record number is increased by one (1). When you
know which record you want to GET or PUT, include it in your statement as done
in lines 510 and 580. Don’t count on chance!

The remainder of the program looks like this:

590
600 REM MORE DATA?/CLOSE FILE
610 LINE INPUT "MORE ENTRIES:"; RS

RANDOM ACCESS FILE APPLICATIONS 271

620
630

IF LEFT$(R$,1) <> "Y" THEN 650
CLOSE 1: OPEN "1", 1, "POINT": GOTO 360

640 :

650
660

CLOSE 1
GOTO 760

670

760

END

(a) Look closely at line 630. Why was it necessary to CLOSE and reOPEN the
sequential file?

(a) If the first file search went to the middle of the sequential file, that is where the
file pointer would stop. If the second file search was for a product number placed
earlier in the file, the pointer would search from the present pointer location to
the file end, resulting in the “INVALID PRODUCT NUMBER” error message.

To put it another way, the purpose of line 630 is to reset the file pointer to the
beginning of the sequential file. This action is not necessary for random access files.

That completes the first random access file application; one part of an entire
product inventory application.

(a) What other programs are needed to complete this series of application programs?

(a) 1) Add new inventory items. 2) Delete inventory items. 3) Change supplier and/
or description. 4) Change reorder point, etc., to name a few.

272 DATA FILE PROGRAMMING IN BASIC

PERSONAL MONEY MANAGEMENT APPLICATION

The second program could form part of a large home financial management software
package. The example gives some hints for setting up your own home finance programs.
The objectives of this application are to show you how to process a “transaction” file
and to demonstrate how account numbers can be used to point out the file and record
in a random access file.

The first step is to decide exactly what expenditures you want to computerize.
Record all income and all expenditures into particular accounts. Include the capability
to discern taxable from non-taxable items so these records can be used as data for your
income tax returns. To keep things simple, the following chart of accounts has been
prepared for this application:

1001 TAXABLE SALARIES

1002 TAXABLE INTEREST

1003 TAXABLE DIVIDENDS

1004 TAXABLE OTHER INCOME
1005 NON-TAXABLE INCOME

1006 MISC., NON-TAXABLE MONEYS
2001 GROCERIES

2002 NON FOOD STAPLES

2003 MORTGAGE

2004 GAS/ELECTRICITY

2005 WATER & GARBAGE

2006 TELEPHONE

2007 HOME INSURANCE

2008 PROPERTY TAXES

2009 FURNITURE

2010 AUTO PAYMENTS

2011 GAS AND OIL

2012 AUTD REPAIR

2013 PARKING/TOLLS

2014 AUTO INSURANCE

2015 FATHER'S CLOTHES

2016 MOTHER'S CLOTHES

2017 SON'S CLOTHES

2018 DAUGHTER'S CLOTHES

2010 CLOTHING REPAIR/CLEANING
2020 SPORTS FEES/TICKETS

2021 SPORTS EQUIPMENT

2022 MAGAZINES/BOOKS

2023 MOVIES/PLAYS

2024 AL COHOL

2025 DINING OUT

2026 VACATION EXPENSES

2027 POSTAGE

2028 SCHOOL/HOUSEHOLD SUPPLIES
3001 LEGAL/ACCTG. FEES

3002 LIFE INSURANCE

3003 MEDICAL INSURANCE

3004 DENTAL INSURANCE

3005 UNREIMBURSED MEDICAL EXPENSES
3006 DRUG EXPENSES

3007 EDUCATIONAL FEES AND TUITIONS
3608 BOOKS AND SUPPLIES

3009 EXCESS SALES TAXES PAID
3010 CONTRIBUTIONS

3011 SAVINGS DEPOSITS

3012 INVESTMENTS

RANDOM ACCESS FILE APPLICATIONS 273

The account number has important significance. The first digit of the account
number is the number of the random access file in which the account details can be
found. All random access files are called BUDGET #. The details of the taxable salaries
account are found in file BUDGETI (1001). The details of the telephone account are in
file BUDGET?2 (2008).

(a) Which file contains the details of the dining out account?

(a) BUDGET2(2006)

The last three digits of the account number indicate the record number of the
random access file containing the account details. The investment account (3010) will
be found in file BUDGET3, record number 10.

(a) The legal/accounting account details are found in file

record number

(a) BUDGET?2, record 30

For convenience, the account number is always entered as a string variable so that
you can use the LEFT$ and RIGHT$ functions to separate the file number and record
number.

To demonstrate the file number concept, we use three separate files for this small
list of accounts. Of course, all these accounts could be placed in one file, but that will
not be the case when your account list grows. At that point you may want to use this
scheme.

The random access files (BUDGET#) contain the details of each account. Fach
record contains the following information in the order shown. The name of the buffer
variable used and the size of the buffer variable in bytes are indicated.

NF$ = ACCOUNT # (4)

DF$ = ACCOUNT NAME (20)

BF$ = BUDGETED AMOUNT (4). ANNUAL BUDGET

EF$ = EXPENDED/EARNED AMOUNT (4). YEAR-TO-DATE

Each month a new sequential transaction file is created containing the informa-
tion found in your checking account check register. For the month of January, the
file is called MONTH1. March is MONTH3, etc. You may keep “old” files on your
disk for other analyses you may want to do. Each month you will create a transaction

274 DATA FILE PROGRAMMING IN BASIC

file, then process or “post” it to the BUDGET # file. Each sequential transaction file
entry includes the following information in the order shown:

C = CHECK #/DEPOSIT SLIP #

Y$ DATE (6)

ws PARTY TO WHOM CHECK IS DRAWN/SOURCE OF FUNDS (20)
A$ = ACCOUNT # (4)

D = DOLLAR AMOUNT

il

il

Notice that the format is set up to be used with deposits and payments and that
the transaction file includes more information than you wiil actually be using. This
file, however, can be used for other things as well, so all this information is included.
Let’s review the application. Each year, create random access files that contain
the beginning status of all your personal accounts. This status inciudes a yearly budget
estimate. Each month create a sequential file (MONTH #) using the information found
in your checkbook register. After the MONTH # file is completed, process or post it
to the BUDGET # files. Periodically, you can print a status report of the BUDGET #
files.

The task is to write the program that processes the monthly transaction file. Here
is the introductory module with the file initialization module:

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350

360

(2)

370
380
390

REM PERSONAL MONEY MANAGEMENT
REM SEQ/R—A FILE APPLICATION

REM VARIABLES USED

REM A$S = N$ = ACCT. # (4)

REM D$ = ACCT. NAME (20)

REM Y$ = DATE (8)

REM W3 = CHECK WRITTEN TO/SOURCE OF FUNDS (20)
REM M$ = MONTH SELECTED (2)

REM C = CHECK #/DEPQOSIT SLIP #

REM D = DOLLAR AMT. 0OF CHECK OR DEPDSIT
REM B = BUDGETED AMT.

REM £ = AMT EXPENDED TO DATE

REM F$ = SEQ. FILE NAME

REM Fz2zs = F1%$ = R—-A FILE NAME

REM R = RECORD NUMBER

REM FILES USED

REM MONTH# = SEQ/TRANSACTION FILE. # IS USER SELECTED.
REM BUDGET# = R—-A FILE. # IS FUNCTION OF A/C # AND
REM CHANGES WITH EACH TRANSACTION

REM INITIALIZE

CLEAR 500

LINE INPUT "WHAT IS THE MONTH # TO BE PROCESSED?"; Ms$
REM DATA ENTRY TESTS

LET F$ = "MONTH" + Ms
CLEAR 300
OPEN "I", 1, F$

REM R-A FILE IS OPENED/FIELDED WITH EACH TRANSACTION

In lines 330 through 360, if the user enters 3 for M$, what is the file name F$ in

line 3507

RANDOM ACCESS FILE APPLICATIONS 275

(a) MONTH3.
(A word of caution: In line 330, the file number is entered into a string variable
MS). If it had been entered into a numeric variable and then changed into a string
variable using the STR$ function, the resulting F$ would be MONTH 3. A space is
reserved for the sign of a number when you use the STR$ function. The program
would never find file MONTH 3 (with a space).

390

400 REM PROCESS TRANSACTIONS

410

420 REM READ SEQ. FILE TRANSACTION

430 1IF EOF(1) THEN 730
440 INPUT #1, C, Y3, W%, A%, D

450
460 REM EXTRACT FILE #/INITIALIZE R~A FILE

470 :REM EXTRACT FILE # INTO F2%
480 REM F2s DATA TESTS

490 LET F1% = "BUDGET" + F2%

500 OPEN "R", 2, F13%
510 FIELD 2, 4 AS NF$, 20 AS DF$, 4 AS BFs, 4 AS EFS$

Line 430 tests for the end of the transaction file. When that file is complete, so
is the program (CLOSE and END). Line 440 reads an entire dataset from the trans-
action file. In the next section, the file number is “extracted’ from the account num-
ber to be used in line 490 to make the complete BUDGET file name. Complete line
470, extracting the file number from the account number (it’s the first digit of A$).

(a) 470

(8) 470 LET F23 = LEFTS(AS,1)

The next section extracts the record number from the account number (the last
three digits of A$), tests for the validity of the record number in line 550, and, if the
record is determined invalid, prints an error message and closes the BUDGET # file.
Fill in line 540.

(a) sz2o0 :
530 REM EXTRACT RECORD #/CONVERT TO #
540 :REM EXTRACT
RECORD # (R)
550 IF R <= LOF(2) THEN 620 :REM RECORD VALIDITY TEST
560 PRINT "RECORD # ERROR ON CHECK #"j; C
570 PRINT "TRANSACTION IS NOT PROCESSED"
580 CLOSE 2 :REM CLOSE R~A FILE

590 GOTO 430 :REM RETURN FOR NEXT TRANSACTION
600 :

276 DATA FILE PROGRAMMING IN BASIC

(a) 540 LET R = VAL(RIGHTS(AS$,3))
(Warning: Don’t forget the double closing parentheses.)

The remaining module copies the proper record to the buffer, updates the
amount expended/earned, and prints the new value back to the file. Follow the remark
clues and complete this module:

(a) soo
610
620

630

640

650
660
670
680

(a) eo0
610
620
630
640
650
660
670
680
690
700
710
720
730
740

REM COPY AND CHANGE R-A FILE RECORD
:REM

:REM
:REM

tREM
s REM

CLOSE 2

REM COPY AND CHANGE R-A FILE RECORD
GET 2, R

LET E = CVS(EFS$)

LET E = E + D

LSET EF$ = MKSS$(E)

PUT 2, R

CLOSE 2

REM RETURN FOR NEXT TRANS
GOTO 430

REM CLOSE FILES
CLOSE
END

COPY RECORD TO
BUFFER

CONVERT EXPENDED

$ TO NUMBER

ADD CHECK AMT. TO
OLD EXPENDED AMT.
LSET INTO BUFFER
COPY BUFFER TO FILE

This completes the program. It will continue reading checking transactions and
processing them until the end of the transaction file is reached, at which point files
are closed and the program ends. This program keeps your disk drive working, but does
nothing on your screen or printer.

The way the current program is written, each transaction OPENs and CLOSE:s a
file — not very efficient use of a disk drive. Professional programmers would scorn the
program because it causes so much activity on the disk drive. Always attempt to minimize
the number of disk accesses in your programs.

RANDOM ACCESS FILE APPLICATIONS 277

(a) If you were told that most of the transactions in this program take place in file
BUDGET?2, show how you would change the program to minimize the use of
OPEN and CLOSE statements.

(@) Your solution may be different from ours. Read ours carefully, however; it
contains some necessary, though tricky, statements.

390
400 REM PROCESS TRANSACTIONS

Jaos LET F3s = Tx": REM DUMMY VALUE FOR FIRST TIME
410

420 REM READ SEQ., FILE TRANSACTION

430 IF EOF(1) THEN 730
440 INPUT #1, C, Y$, W$, AS, D

450

460 REM EXTRACT FILE #/ INITIALIZE R-A FILE

470 LET F2% = LEFTS$S(A$,1)

J480 IF F2s = F3s THEN 540 REM IF SAME FILE, SKIP THE OPEN
\l485 LET F3% = F2%: REM RESET F3$ FOR NEXT TIME

490 LET F1% = "BUDGET" + F2s3

500 OPEN "R", 2, F1s%

510 FIELD 2, 4 AS NF$, 20 AS DF$, 4 AS BF$, 4 AS EFs$
520

530 REM EXTRACT RECORD #/ CONVERT TO #

540 LET R = VAL(RIGHTS$(AS$,3))
550 IF R<= LOF(2) THEN 620 :REM RECORD VALIDITY TEST

560 PRINT "RECORD # ERROR ON CHECK #"; C
570 PRINT "TRANSACTION IS NOT PROCESSED"

\lSBO :
590 GOTO 430 :REM RETURN FOR NEXT TRANSACTION
600
610 REM COPY AND CHANGE R~A FILE RECORD

620 GET 2, R

630 LET E = CVS(EFS)
640 LET £ = E + D

650 LSET EF$ = MKSS$(E)
660 PUT 2, R
Je70 GOTO 430

680 :

690 REM RETURN FOR NEXT TRANS
700 GOTO 430

710

Note: (/) shows changes made.

278 DATA FILE PROGRAMMING IN BASIC

(@) Only one small component of this application has been completed. List the other
programs you would need to make a complete personal finance management
system?

(2) Programs:
1. Edit MONTH# file for errors. eckbook.
2. Print BUDGET # files.
3. “Exception report” showing over budget accounts or projected over budget
accounts.

You have seen only fixed-record length random access files. Some versions of
BASIC provide for variable-length records that make more efficient use of disk space.
Another technique can be used to place multiple datasets in one random access record.
Such record-splitting is explained in detail in most basic reference materials and is
not included here.

We have found random access files much easier to use than sequential files. But
let’s not forget that sequential files have their place in computing, especially when there
is need for file space efficiency.

With the knowledge gained from this book, you should now be able to read the
reference manual for your computer with new understanding. You should also be able
to write your own data file programs and read programs written by others.

RANDOM ACCESS FILE APPLICATIONS 279

CHAPTER 8 SELF-TEST

1. The first application in this chapter was an inventory control system. Before you
continue you may want to review the system description so you are familiar with
the contents of each file and how they interact.

To this system is added a third file; a sequential transaction file in which is
placed the data regarding each transaction that affects the inventory. Two types of
transactions will affect inventory:

Type 1 — units are added to inventory.
Type 2 — units are taken from inventory.

Data is recorded in the sequential transaction file in this format.

T = TRANSACTION TYPE (1 OR 2)
Y$ DATE (6)

N$ INVOICE # (5)

P2% = PROD # (4)

Q1 = QUANTITY ADDED OR DEDUCTED

1oH

Write a program to create, then read/display, the sequential data file named
TRANSACT with this dataset. Make certain the product numbers entered in the file
correspond to product numbers that exist in PRODUCT. Include both transaction types
in your file data.

280 DATA FILE PROGRAMMING IN BASIC

2. Write a program to process the data in TRANSACT to PRODUCT (update the
quantity in stock information). For each dataset input from TRANSACT, use the
sequential file POINT to locate the record number in PRODUCT to be updated or
posted with the data from TRANSACT.

3. To the previous problem add a routine that, after all the transactions have been
processed, will search the entire INVEN file and print a report of products that
have fallen below the reorder point and need reordering.

RANDON ACCESS FILE APPLICATIONS 281

100
110
120
130
140
150
160

170
171
180
190
200
210
220
230
240
250
260
270
280
290
300

310
320
330
340

350
360
370

380
390
400

410
420
430
440
450
460

470
480
490
500
510
520
530
540
550
555
560
570

Answer Key
REM CREATE THEN READ/DISPLAY SEQ. FILE NAMED 'TRANSACT'
REM VARIABLES USED
REM T = TRANSACTION TYPE (1 IF ADD, 2 IF SUBTRACT)
REM Y$ = DATE (FORMAT: XX/XX/XX) (8)
REM N$ = INVOICE NUMBER (5)
REM P2$ = PRODUCT # (MUST CORRESPOND TO EXISTING # IN
IN 'PRODUCT' FILE) (4)
REM Q@1 = QUANTITY TO BE ADDED OR SUBTRACTED FROM STOCK
REM R$ = USER RESPONSE VARIABLE
REM FILES USED
REM SEQUENTIAL FILE NAME: TRANSACT
REM DATASET FORMAT: T,Y$,N$,P2%,0Q1
REM INITIALIZE

oPEN "O", 1, "TRANSACT"

REM DATA ENTRY MODULE

PRINT "TRANSACTION CODES: 1=ITEMS TO BE ADDED TO STOCK"

PRINT " 2=ITEMS TO BE SUBTRACTED FROM STOCK"
INPUT "ENTER TRANSACTION CODE (1 OR 2):"; T

IF T <> 1 AND <> 2 THEN PRINT : PRINT "ENTRY ERROR.

PLEASE REENTER.": PRINT : GOTO 270

LINE INPUT "ENTER TRANSACTION DATE {(XX/XX/XX) :"3 Y3

REM DATA ENTRY TESTS 60O HERE

LINE INPUT "ENTER INVOICE NUMBER:"; NS

IF LEN(N$) <> 5 THEN PRINT : PRINT "ENTRY ERROR. USE 5 DIGIT
INVOICE NUMBER." : PRINT : GOTO 330

REM OTHER DATA ENTRY CHECKS GO HERE

LINE INPUT "ENTER PRODUCT NUMBER:"; P23

IF LEN(P2%) <> 4 THEN PRINT : PRINT "ENTRY ERROR. USE 4 DIGIT
PRODUCT NUMBER." : PRINT : GOTO 360

REM DTHER DATA ENTRY TESTS GO HERE

INPUT "QUANTITY TO BE ADDED OR SUBTRACTED FROM STOCK:"; Q1

IF Q1 <> ABS(Q1) THEN PRINT : PRINT "DO NOT USE NEGATIVE
NUMBER. PLEASE REENTER.": PRINT : GOTO 390

REM OTHER DATA ENTRY TESTS GO HERE

REM WRITE TO FILE

PRINT#1, T3 ","; vs; ","; Ns; ","; P2s; ","; Q1

LINE INPUT "MORE TRANSACTIONS (Y OR N) ?"; RS

IF R$ <> "Y" AND R$ <> "N" THEN PRINT : PRINT "TYPE 'Y' FOR

YES OR 'N' FOR NOY : PRINT : GOTO 450
IF R$ = "y" THEN 270
REM CLOSE FILE

CLOSE

LINE INPUT "DISPLAY THIS FILE (Y OR N) ?"; R$

REM Y OR N TEST GUOES HERE
IF R = "N" THEN END
OPEN "I"™, 1, "TRANSACT™"

IF EOF (1) THEN 670
INPUT#1, T,Y$,N$,P2%,Q1
PRINT

continued on next page

282 DATA FILE PROGRAMMING IN BASIC

580
590
600
610
620
630
640
650
660
670
680

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT

REM
CLOSE
PRINT

"TRANSACTION TYPE: "; T

"TRANSACTION DATE: "; Y3

"INVDICE # : "; N$

"PRODUCT ¥ : "; P2s

"QUANTITY : "; Q1
LINE INPUT "PRESS 'ENTER' FOR NEXT INVOICE";
GDTO 555

CLOSE FILE

PRINT

"ALL DATA DISPLAYED AND FILE CLOSED"

R$

RANDON ACCESS FILE APPLICATIONS 283
2. 100 REM PROB 8-2 SOLUTION

110 REM POSTS TRANSACTION FILE NAMED 'TRANSACT' TO
'PRODUCT"' FILE

120 REM VARIABLES USED

130 REM R$ = USER RESPONSE VARIABLE

140 REM P1$ = P2% = PROD # (&)

150 REM R = RECORD #

160 REM P$ = PROD # (4)

170 REM D$ = DESCRIPTION(20)

180 REM S$ = SUPPLIER (20)

190 REM L. = REORDER POINT

200 REM Y = REORDER QUANTITY

210 REM Q@ = QUANTITY IN"STOCK

220 REM C = COST

230 REM U = UNIT SELLING PRICE

240 REM Y$ = DATE (8)

250 REM N$ = INVOICE # (5)

260 REM Q1 = QUANTITY ADDED DR DEDUCTED

270 REM T = TRANSACTION TYPE

280

290

300 REM FILES USED

310 REM POINT = SEQ POINTER FILE

320 REM PRODUCT = R-A FILE

330 REM TRANSACT = SEQ. TRANSACTION FILE

340

350 REM FILE INITIALIZATION

360 PRINT "WORKING"

370 CLEAR 300

380 OPEN "I1", 1, "POINT"

390 OPEN "R", 2, "pProbDuCT"

400 FIELD 2, 4 AS PF$, 20 AS DF$%, 20 AS SF$, 4 AS LFS$, 4 AS YFS$,
QF$, 4 AS CF$, 4 AS UFS

410 OPEN "I", 3, "TRANSACT"

420

430 REM READ TRANSACTION FILE

440 1F EOF(3) THEN 850

450 INPUT #3, T, Y$, N$, P23, Ql

460

470 REM READ POINTER FILE

480 IF EOF(1) THEN 790

490 INPUT #1, P1%, R

500 IF P1$%$ <> THEN 480

510

520 REM GET R—A FILE RECORD

530 IF R > LOF(2) THEN 750

540 GET 2, R

550 LSET Q = CVS(QFS$)

560 IF T = 2 THEN 600 REM TEST TRANSACTION TYPE

570 LET Q = Q + Q1l: REM ADD NEW QUANTITY

580 GOTO 620

590 :

600 LET Q = Q — Ql: REM DEDUCT QUANTITY TAKEN

610 IF Q@ < 0 THEN LET Q = Q + Ql: GOTO 690 :REM ERROR TEST

620 LET QF$ = MKS$(Q)

(continued on next page)

4 AS

284 DATA FILE PROGRAMMING IN BASIC

H

P23

P2s$

ITEM":

630 PUT 2, R

640

650 REM RESET POINTER IN POINTER FILE

660 CLOSE 1: OPEN "I", 1, "POINT": GOTO 440

670

680 REM ERROR MESSAGE

690 PRINT "INVALID ENTRY, TOO FEW GOODS"

700 PRINT "TRANSACTION DATED "; Ys$;" FOR PROD: ";

710 PRINT "NOT PROCESSED"

720 GOTO 660

730

740 REM ERROR MESSAGE

750 PRINT "RECORD # ERROR IN POINTER FILE"

760 GOTO 800

770 =

780 REM ERROR MESSAGES

790 PRINT "PRODUCT # NOT IN POINTER FILE"

800 PRINT "TRANSACTION DATED "; Ys;" FOR PROD # ";

810 PRINT "NOT PROCESSED"

820 GOTO 440

830 :

840 REM CLOSE FILES

850 CLOSE

860 END

B60

870 REM REDRDER REPORT GENERATOR

880 :

890 LINE INPUT "REDORDER REPORT (Y OR N) ?"; RS

900 REM Y DR N TEST GOES HERE

910 IF LEFTS(RS,1) <> "Y" THEN 1090

920 OPEN "R". 2, "PRODUCT"

930 FIELD 2. 4 AS PFS$, 20 AS DF$. 20 AS SF%, 4 AS LFS,
4 AS YF$, 4 AS QF$, 4 AS CF$, 4 AS UFS$

940 FOR X = 1 TD LDF(2)

950 GET 2

960 LET L = CUS(LFS)

970 LET Y = CUS(YF3$)

980 LET Q = CUS(QFS$)

990 LET ¢ = CUS(CFS$)

1000 IF Q@ > L THEN 1080

1010 PRINT "REQRDER PROD #: ": PF%

1020 PRINT "I1TEM: "; DFs%

1030 PRINT "SOURCE: "; SFs$

1040 PRINT "DN HAND: "; Q

1050 PRINT "REDORDER QUANTITY: "; Y

1060 PRINT "LAST COST: $": C

1070 PRINT : LINE INPUT "PRESS 'ENTER' FOR NEXT
RS PRINT

1080 NEXT X

1090 CLOSE

1100 END

Final Self-Test

1. Write a program to create a sequential disk file named PHONEI, containing the
following data concatenated into one string in fields as indicated:

110
120
130
140
150
160
170
180
190
200

last name (fifteen character maximum)

first name (fifteen character maximum)

area code (three digits)

phone number (eight characters, including hyphen between third and fourth
character)

REM
REM
REM
REM
REM
REM

REM
REM

VARIABLES USED

Ls =
Fs =
As

N$ =
Ds =

FILES

PHONE 1

LAST NAME (15)

FIRST NAME (15)

AREA CODE (3)

NUMBER (8 CHARACTERS INCLUDING HYPHEN)
CONCATENATED DATASET

USED
= NAME & PHONE NUMBER DIRECTORY

285

286 DATA FILE PROGRAMMING IN BASIC

FINAL SELF-TEST 287

2. Write a program to display all the datasets in PHONE1, with the data items
separated (undo concatenation) under headings as follows:

LAST NAME FIRST NAME AREA CODE PHONE NUMBER
110
120 REM VARIABLES USED
130 REM D$ = ONE COMPLETE DATASET
140
150 REM FILE USED = PHONE1

160 :

288 DATA FILE PROGRAMMING IN BASIC

3. Write a program that will select and display all names and numbers in a user-
selected area code from PHONEI, with the option to continue or STOP when the
display is complete.

110

120
130
140
150
160
170
180

REM
REM
REM
REM

REM

VARIABLES USED

A$ = AREA CODE (USER REQUESTED)
D% = ONE COMPLETE DATASET
R$% = USER RESPONSE TO CONTINUE

FILE USED = PHONE]

FINAL SELF-TEST

289

4. Write a program to display the contents of the random access disk file named
PRODUCT that you created in the Chapter 7 Self-Test problems 1 and 2.

110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

VARIABLES

P3$,PBS
D$,DB%
S%,SBs%
L,LBS%
Y,Y8$
Q,0Bs
C,CB$
U,uBs

USED

PROD. NO. (4)
DESCRIPTION(20)
SUPPLIER(20)
REORDER POINT
REORDER QUANTITY
QUANTITY

COST

UNIT SELLING PRICE

R$ = PRESS 'ENTER' TO CONTINUE VARIABLE

FILES USED

PRODUC

T

- RA FILE

290 DATA FILE PROGRAMMING IN BASIC

FINAL SELF-TEST 291

5.

Write a program to change each dataset in PRODUCT by increasing the unit sales
price of each item by 10 percent. The program should display the product num-
ber, the old price, and the new price.

110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

REM
REM

VARIABLES

P3$,PBS
D$,DBS
$5,58%
L.LBS
Y,YBs
Q,0BS%
C,CB3
U,UBs

USED
PROD. NO. (4)
DESCRIPTION(20)
SUPPLIER(20)
REORDER POINT
REORDER QUANTITY
QUANTITY
cosT
UNIT SELLING PRICE

R$ = USER RESPONSE TO CONTINUE ENTRIES

Ul = CHANGED UNIT SALES PRICE

FILES USED

PRODUC

T

- RA FILE

292

DATA FILE PROGRAMMING IN BASIC

1.

100
110
120
130
140
150
160
170
180
120
200
210
220
230
240
250
260
270
280
290

300

310
320
330
340

350

360
370
380
390

400
410
420
430

440
450

460
470
480
490
500
510
520
530
540
550
560

Answer Key

REM FINAL SELF TEST PROB 1

REM VARIABLES USED

REM L% = LAST NAME {15)

REM F$ = FIRST NAME (15)

REM A%$ = AREA CODE (3)

REM N$ = NUMBER (8 CHARACTERS INCLUDING HYPHEN}
REM D3s = CONCATENATED DATASET

REM FILES USED

REM PHONE1 = NAME & PHONE NUMBER DIRECTORY
REM INITIALIZATION

CLEAR 500

oPEN "O", 1, "PHONELD"

REM DATA ENTRY MODULE

PRINT "TYPE 'sSTOP' IF NO MORE ENTRIES."

LINE INPUT "ENTER LAST NAME (15 CHAR., MAX.):"; LS

IF L% = STOP THEN 540

IF LEN(LS) = 0 THEN PRINT "NO ENTRY MADE. PLEASE MAKE AN ENTRY.":
GOTO 260

IF LEN(L3%) > 15 THEN PRINT "ENTRY TOO LONG., ONLY 15 LETTERS
ALLOWED.": GOTO 260

IF LEN(LS$) < 15 THEN LET L$ = L% + " ": GOTO 310

LINE INPUT "ENTER FIRST NAME (15 CHAR. MAX.):"; Fs

IF LEN(F$) = 0 THEN PRINT "NO ENTRY MADE. PLEASE MAKE AN ENTRY.":
GOTO 330

IF LEN(F$) > 15 THEN PRINT "ENTRY TOO LONG, ONLY 15 LETTERS
ALLOWED.": GOTO 330

IF LEN(F$) < 15 THEN LET F% = Fs + " ": GOTO 360

.

LINE INPUT "ENTER AREA CODE (3 DIGITS ONLY):"; AS
IF LEN(AS$) <> 3 THEN PRINT "AREA CODE MUST HAVE THREE DIGITS ONLY.
DO NOT USE PARENTHESES.": GOTO 380

PRINT "ENTER PHONE NUMBER USING THIS FORMAT: 999-9999"

LINE INPUT "WHAT IS THE PHONE NUMBER?"; N$

IF LEN(NS$) = 0 THEN PRINT "NO ENTRY MADE. PLEASE ENTER AS
REQUESTED.": GOTO 410

IF LEN(N$) <> 8 THEN PRINT "ENTRY ERROR. YOU ENTERED"; N$: GOTO 410
IF ASC(MIDS(NS$,4,1)) <> 45 THEN PRINT "USE A HYPHEN (DASH) BETWEEN
THE 3RD AND 4TH DIGITS.": GOTO 410

H

REM CONCATENATE AND PRINT DATASET 70 FILE
LET D$ = LL$ + F$ + AS$ + N3
PRINT #1, D3%

cLS

GOTO 260

REM CLOSE FILE
CLOSE

PRINT "FILE CLOSED."
END

FINAL SELF-TEST 293

2.

100 REM FINAL SELF TEST PROBLEM 2 SOLUTION
110

120 REM VARIABLES USED

130 REM D$ = ONE COMPLETE DATASET

140 =

150 REM FILE USED = PHONE 1

160 :

170 REM INITIALIZATION

180 CLEAR 500

190 OPEN "I", 1, "PHONELD"

200 :

210 PRINT "LAST NAME", "FIRST NAME", "AREA CODE", "PHONE NUMBER"
220 PRINT

230 REM READ AND DISPLAY DATA

240 IF EOF(1) THEN 290

250 INPUT #1, DS

260 PRINT LEFTS$(D$,15), MID$(D%$,16,15), MID$(D$,31,3), RIGHT$(DS$,8)
270 GOTO 240

280 REM CLOSE FILE

290 CLOSE 1

300 PRINT : PRINT "ALL DATA DISPLAYED AND FILE CLOSED."

310 END

3.

100 REM FINAL SELF TEST PROB 3 SOLUTION
110 =

120 REM VARIABILES USED

130 REM A% = AREA CODE (USER REQUESTED)
140 REM D% = ONE COMPLETE DATASET

150 REM R$ = USER RESPONSE TO CONTINUE
160 :

170 REM FILE USED = PHONE1

180 :

190 REM INITIALIZATION

200 CLEAR 500

210 OPEN "IM, 1, "PHONE1"

220

230 REM USER REQUEST ROUTINE

240 PRINT "ENTER AN AREA CODE AND I WILL DISPLAY ALL NAMES AND"
250 PRINT "NUMBERS FROM THAT AREA CODE."

260 LINE INPUT "ENTER AREA CODE (3 DIGITS ONLY)"; AS

270 IF LEN(A$) <> 3 THEN PRINT "ENTRY ERROR. YOU ENTERED"; A$: GOTO 260
280

290 REM INPUT, SELECT AND DISPLAY DATA

300 CLS

310 PRINT "LAST NAME", "FIRST NAME", "AREA CODE", "PHONE NUMBER"
320 IF EOF(1) THEN 380

330 INPUT $1, D$

340 IF A% <> MID$(D$%$,31,3) THEN 320

350 PRINT LEFT$(D$,15), MID$(D$,16,15), A%, RIGHTS(DS$,8)

360 GOTO 320

370 :
380 PRINT : PRINT "ALL"; A$; "NUMBERS DISPLAYED." : PRINT
390 LINE INPUT "ANOTHER AREA CODE (TYPE YES OR NO)?"; RS
400 IF LEFTS(R$,1) = "N" THEN 460

410

420 REM RESET DATA POINTER TO BEGINNING OF FILE

430 CLOSE 1 : OPEN "I", 1, "PHONE1" : GOTO 260

440

continued on next page

294

DATA FILE PROGRAMMING IN BASIC

450
460
470
480

4.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
265
270
280

290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480

REM CLOSE FILE

CLOSE 1

PRINT : PRINT "FILE CLOSED."

END

REM FINAL SELF TEST PROB 4 SOLUTION

REM VARIABLES USED

REM P$,PB$ = PROD. NO. (4)

REM D$,D8% = DESCRIPTION (20)
REM S$,5B% = SUPPLIER (20)

REM L,LB$ = REORDER POINT

REM Y,YB$ = REORDER QUANTITY
REM Q,QB% = QUANTITY

REM c,CB$% = COST

REM U,uUBs$ = UNIT SELLING PRICE
REM R$ = PRESS 'ENTER' TO CONTINUE VARIABLE
REM FILES USED

REM PRODUCT - RA FILE

REM INITIALIZE

CLEAR 300
oPEN "R", 1, "PRrRoODuCT"
FIELD 1, 4 AS PB%, 20 AS DBS%, 20 AS SB%, 4 AS LBS,

QB%, 4 AS CBs, 4 AS UBS

4 AS YBS$,

REM READ, CONVERT, AND DISPLAY ONE DATASET AT A TIME

PRINT "PRESS 'ENTER' TO DISPLAY NEXT DATASET."
PRINT

FOR X = 1 TO LOF(1)
GET 1

LET L = CVS(LBS)
LET Y = CV5(YBs$)
LET Q@ = CVS(QBs$)
LET C = CVS(CBS$)
LET U = CVS(UBS)
PRINT PBs$; DB$; SB$; L3 Ys; Q3 C; U
LINE INPUT ""; Rs
NEXT X

REM CLOSE FILE

PRINT : PRINT "ALL DATASETS DISPLAYED."
CLOSE 1

PRINT "FILE cLOSED."

END

4 AS

FINAL SELF-TEST 295

5.

100 REM FINAL SELF TEST PROB 5 SOLUTION
110 =

120 REM VARIABLES USED

130 REM P$,PB$ = PROD. NO. (4)

140 REM D$,DB$ = DESCRIPTION (20)

150 REM $%,SB3% = SUPPLIER (20)

160 REM L,LB$ = REORDER POINT

170 REM Y,YB$ = REORDER QUANTITY

180 REM Q,Q0B% = QUANTITY

190 REM c,CBs = COST

200 REM U,UB%$ = UNIT SELLING PRICE

210 REM R$ = USER RESPONSE TO CONTINUE ENTRIES
220 REM Ul = CHANGED UNIT SALES PRICE
230

240 REM FILES USED

250 REM PRODUCT - RA FILE

260 :

270 REM INITIALIZE

275 CLEAR 300

280 OPEN "R", 1, "PRODuUCT"

290 FIELD 1, 4 AS PB3%, 20 AS DBS$S, 20 AS SB%, 4 AS LBS$, 4 AS YB$, 4 AS
QBs$, 4 AS CBS$, 4 AS UBS

300 :

310 PRINT "PRODUCT #", "OLD UNIT PRICE", "NEW UNIT PRICE"

320 PRINT

330 FOR X = 1 TO LOF(1)

340 GET 1, X

350 LET U = CVS(UBS$)

360 LET Ul = U + (U*,1)

370 LSET UB$ = MKS$(UI1)

380 PRINT PBs, U, U1

390 PUT 1, X

400 NEXT X

410 :

420 REM CLOSE FILE

430 CLOSE 1

440 PRINT "PRICE CHANGES COMPLETED. FILE CLOSED."

450 END

APPENDIX A

BASIC Reference Guide for
Statements Introduced in
This Book

ASC (X$) — Gives the ASCII code number value for the first character in X8$.

CHR$(X) — Converts X to the corresponding ASCII code.

CLOSE n — Terminates the file buffer assignments and forces the buffer to flush its
contents.

CVI(BF$) — Restores random file buffer string BF$ to a numeric value. “I” is for
integer number.

CVS(BF$) — S is for single precision number.

CVD(BF$) — D is for double precision number.

EOF(n) — End-of-file detector.

FIELD #n — Organize random access file buffer field n into string variable sections.

GET n,r — Load into the random file buffer n, the contents of record r.

INPUT #n, X, Y$ — Read data from sequential file n into variables X and Y$.

LEFT3$(X$,n) — Select the leftmost n characters in X$.

LEN(X$) — Gives the actual number of characters in X$.

LINE INPUT — Allows user to enter just one string variable with ENTER being the
only allowed delimiter.

LOF(n) — Gives the number of the last or highest numbered record used in a file.

LSET BF$ — Left-justifies information into buffer variable BFS$.

MID$(X$,y,n) — Replace or select n characters of X$ beginning with character position
y.

MKI$(X) — Converts numeric value X to a string for placement in the random file
buffer. “I” is for integer number. Makes a two-byte string.

MKS$(X) — “S” for single precision number. Makes a four-byte string.
MKD$(X) — “D” for double precision number. Makes an eight-byte string.

OPEN “M”, n, “name” — Assigns buffer number n to file “name”, in access mode M.
Mode I is sequential input, O is sequential output, R is random access input/
output.

297

298 DATA FILE PROGRAMMING IN BASIC

PRINT #n, X$; ",”; Y — Print onto sequential file n the values for X$ and Y.

PUT n, r — Write the contents of buffer n to random access file record 1.

RSET BF$ — Right-justifies data into buffer string BFS.

RIGHTS$(X$, n) — Selects the rightmost n characters in X$.

STR$(X) — Converts the numeric expression X to a string.

VAL(X$) — Converts X$ to a numeric value.

WRITE #n, X$,Y — Print onto file n the values for X$ and Y. Used in BASIC-80
only.

APPENDIX B
ASCII Chart

Decimal Character Decimal Character Decimal Character
000 NUL 031 Us 062 >
001 SO11 032 SPACE 063 ?
002 STX 033 ! 064 @
003 ETX 034 « 065 A
004 EOT 035 # 066 B
005 ENQ 036 b 067 C
006 ACK 037 % 068 D
007 BEL 038 & 069 E
008 BS 039 ' 070 F
009 HT 040 (071 G
010 LF 041) 072 H
011 VT 042 * 073 |
012 FF 043 + 074 J
013 CR 044 o 075 K
014 SO 045 - 076 L
015 SI 046 . 077 M
016 DLE 047 / 078 N
017 DC1 048 0 079 0
018 DC2 049 1 080 P
019 DC3 050 2 081 Q
020 DC4 051 3 082 R
021 NAK 052 4 083 S
022 SYN 053 5 084 T
023 ETB 054 6 085 U
024 CAN 055 7 086 v
025 EM 056 8 087 w
026 SUB 057 9 088 X
027 ESCAPE 058 f 089 Y
028 FS 059 ; 090 VA
029 GS 060 < 091 [
030 RS 061 = 092 \

LF = Line Feed FF = Form Feed CR = Carriage Return DEL = Delete
299

300 DATA FILE PROGRAMMING IN BASIC

Decimal Character Decimal Character Decimal Character
093] 105 i 117 u
094 t 106 i 118 v
095 « 107 k 119 w
096 ' 108 1 120 X
097 a 109 m 121 y
098 b 110 n 122 zZ
099 ¢ 111 0 123 {
100 d 112 p 124 I
101 e 113 q 125 }
102 f 114 r 126 Y
103 g 115 s 127 DEL
104 h 116 t

APPENDIX C

List of Data File Example Programs

Chapter Four

p- 100-101; Creates a sequential file named PROPERTY for a home inventory. Dataset
format: D$, N, V

p. 103-104; Reads/displays PROPERTY

p. 107; Creates, then summarizes and displays Quality Control data. Dataset format:
N% (integer value). File name is user selected.

p. 108-109; Data file demonstration. Self-contained file creating and displaying
program. Sequential file name: DEMO1. Dataset format: D$ (one string)

Chapter Four Self-Test

p- 128; Creates a sequential file named GROCERY. Dataset format: A$, B

p. 128-129; Reads/displays GROCERY.

p. 129-130; Creates a file of customer credit information. Sequential file name is user
selected. Dataset format: C$, N§, R where C$ is five digit customer number, N$ is 20
char. max. customer name, R is one digit credit rating (1 to 5).

p. 130; Reads/displays customer credit file

p. 127; Creates a sequential file named PROB1. Dataset format: A$, BS, C, D

p. 127; Reads/displays PROB1

p. 130-131; Creates a sequential file of money transactions. File name is user selected.
Dataset format: D$ (one concatenated string) from A$ (char. positions 1 to 5), T$ (char.
positions 6, 7), and C$ (char. positions 8-14).

p. 131; Reads/displays the transaction file

p. 132; Creates a sequential file named ADDRESS. Dataset format: one fielded string,
concatenated from name (char, positions 1-20), street address (char. positions 21-40),
city (char. positions 41-50), state code (char. positions 51, 52), and zip code (char.
positions 53-57)

p. 132-133; Reads/displays ADDRESS

p. 133; Creates files of form letter texts. Sequential file name is formed by
concatenating LETTER + a user selected number. Dataset format: R$ (one line of text,
255 char. max. each)

p. 133-134; Reads/displays LETTER #

301

302 DATA FILE PROGRAMMING IN BASIC

Chapter Five

p. 136-137; Sequential file copying program. Uses Chapter 4 Self-test Problem 1 data
file. File name is user selected.

p. 143-144; Adding data to the end of an existing sequential file. Uses GROCERY from
Chapter 4 Self-test problem 2, and temporary file named TEMPFIL

p. 151-152; First version of Credit File Changer program, to select dataset by customer
number and option to change customer name. Uses customer credit file (name is user
selected) from Chapter 4 Self-test problem 3. Temporary sequential file name:
TEMPFIL

p. 155; Read/displays the customer credit file using the PRESS ENTER TO
CONTINUE technique

p. 156; Second version of Credit File Changer program, using the customer credit file
(name is user selected) and temporary sequential file named TEMPFIL. Uses PRESS
ENTER TO CONTINUE technique, with option to change customer number.

p. 161-163; Third version of Credit File Editor program allows changes to all data items
in dataset, inserting new datasets, or deleting datasets from the file. Sequential file name
is user selected. Temporary file named TEMPFIL.

p. 172-174; File merging program. Uses two sequential files with same format. Account
numbers in each file are in ascending numeric order. File names are user selected,
including output sequential file name. The original sequential files to merge are from
Chapter 4 Self-test problem 4. Displays contents of merged file.

p. 183-184; Letter writing program. Uses sequential file ADDRESS created in Chapter 4
Self-test problem 3, and the LETTER# sequential files from Chapter 4 Self-test
problem 6.

Chapter Five Self-Test

p. 191; Makes a copy of ADDRESS file. Sequential file copy name is user selected.

p. 191-192; Creates two files from two alphabetized lists of magazine titles. Dataset
format: T$. Sequential file names are user selected.

p. 192-193; Program to merge the magazine title files into one merged file maintaining
alphabetical order. Original sequential file names and name for merged file are user
selected. Displays merged data.

p. 193-194; Program to create and/or add to or delete from a sequential file of household
maintenance tasks. Dataset format: M$ Sequential file name is user selected. Temporary
file name: TEMPFIL.

Chapter Six

p. 198-199; Cassette version of PROPERTY file creating program.

p. 201-202; Reads PROPERTY file from cassette.

p. 204; Creates a cassette file (referred to as STAT1) of statistical data. Dataset format;
M (single value)

p. 206-207; Makes a copy of STAT1 on a separate cassette.

p. 207-208; Program to add data to end of existing cassette file. Uses STATI.

p. 211; Program to add data to cassette file version of GROCERY, by placing new data
into an array.

LIST OF DATA FILE EXAMPLE PROGRAMS 303

Chapter Six Self-Test

p. 220; Cassette version to create a file as in Chapter 4 Self-test problem. 1. Dataset
format: A$, B$, C, D

. 220; Cassette version to read/display the file created in previous problem

. 220-221; Creates a cassette file for a shopping list

. 221; Cassette file reads/displays program for shopping list file

. 221-222; Creates a cassette file version of ADDRESS, with concatenated dataset

. 222; Reads/displays the cassette file version of ADDRESS

. 222-223; Makes a copy on a separate cassette of cassette file version of ADDRESS

T T T T oo

Chapter Seven

p- 235-236; Creates a random access file named INVEN (parts inventory). Dataset
format: N§$, D$ (N$ is part number — 6 characters, D$ is part description —20
characters)

p. 237-238; Reads/displays random access file INVEN

p. 239-240; Program to create and/or add data to a random access file named PHONE.
Dataset format: N$, C$, P$ where N$ is customer number (5 characters), C$ is
customer name (20 characters) and P$ is phone number 10 characters

p. 240; Program module to read/display PHONE

p. 242-244; Program to create, then read/display, a new version of INVEN called
INVEN?2 that includes a single precision quantity of “‘parts in stock” Dataset format:
N$, D$, Q

p. 245; User provided program to create random access file named MASTER. Dataset
format: G$ (20), S$ (8), Q (4 - single precision value), M$ (30)

p. 246-247; Program to copy random access file MASTER. Random access copy file
name: STORE1

p. 249-250; Random access file editing program using INVEN. Dataset format: C$, DS,
which allows changing either data item in a dataset, deleting a dataset, or no change to
dataset

p. 254-255; Program to make a random access file copy of a sequential file. The
sequential file named CUST is created by modifying the program to create a customer
credit file in Chapter 4 Self-test problem 3. Dataset format: N$, P$, C, B. Random
access file copy name: CUSTI, with the same dataset format, C and D stored as single
precision values

p- 255; Program to change one complete random access file record from one record to a
different one in the same file

p. 256; Program to display the contents of any random access file one complete record
at a time :

Chapter Seven Self-Test

p. 261; Program to create a random access business inventory file named PRODUCT.
Dataset format, P$, D$, S$, L, Y, Q,C, U

p. 262; Programs to create and read/display a sequential file named POINT, which has
one data item copied from random access file PRODUCT’s dataset, and also the record
number of that dataset. Sequential file dataset format: P$, R

p. 263, Program to make a random access file copy from another random access file.
Source file name: CUST1 (from p. 254-255). Copy file name: CUST2

p. 263-264; Program to read/display both CUST1 and CUST?2, dataset by dataset, for

304 DATA FILE PROGRAMMING IN BASIC

comparison/verification of accurate copy

p. 264-265; Program to create checkbook register transaction files for each past month,
for use in Chapter 8. These are sequential files named MONTH#. Dataset format: C,
Y$, W$, AS$, D Includes module to read/display the file created by the program. A$
selected from chart of accounts on p. 272. ‘

p- 265-266; Program to create random access files named BUDGET# (three files) for
use in Chapter 8. Account chart numbers and name are from p. 272. Dataset format:
N$, D$, B, E, single precision values for B and E. Program includes module to
read/display the file just created.

Chapter Eight

p. 268-271; Program to change the cost and unit selling price in random access file
PRODUCT, using sequential file POINT to “‘look up’ the record number in product for
the dataset needing change. Programs for creating the files used are in Chapter 7
Self-test.

p. 274-276; Program to modify random access file BUDGET# data using data from
sequential files MONTH#. Posts checkbook transactions to BUDGET# files. Uses
chart of accounts numbers to identify both the BUDGET# file name and the record
number in that file where transaction is to be posted.

Chapter Eight Self-Test

p. 283-284; Problem solution requires a program to create an inventory transaction
sequential file of items added to or taken from inventory, named TRANSACT. Dataset
format: T, Y$, N§, P2$, Q1. Solution program processes or posts the inventory
transactions to PRODUCT, using the product number in TRANSACT to locate the
record number in POINT for the dataset in PRODUCT where the change is to be posted.
p. 284; Program that examines PRODUCT and generates a report of inventory items
that have fallen below the reorder point

Final Self-Test

p. 292-293; Program creates a sequential file named PHONE! with last name, first
name, area code, and phone number concatenated into one string. Dataset format: D$
p. 293; Displays data from PHONEI, undoing the concatenated dataset

p. 293-294; Program to display only those datasets in PHONEI containing a
user-selected area code

p. 294; Program to read/display PRODUCT

p. 295; Program to increase all unit selling prices in PRODUCT by 10% and display old
and new unit selling prices

Index

AND, logical, 31, 76

Arrays, 145, 177-178, 203-212
ASC, 33-37, 74-76, 306-307, 333
ASCII chart, see Appendix C
ASCII code, 33-37, 98

BASIC, definition, 2
Buffer, 90-94, 95, 226-229
Byte, 87-89, 225-227, 241, 316-317

Cassette data files, 195-225

Cassette tapes, 195-196, 198, 202-203
CHRS, 98-100, 181-183, 333
CLOAD, 195

CLOSE, 93-95, 101-102, 226, 311, 333
CMD “R™, 197

CMD “T°, 197

Comparisons, see IF. . THEN
Concatenation, 28-29, 58-62, 64
CREATE, 309-310, 317

CSAVE, 195

CVD, 241-242, 333

CVi, 241-242, 333

CVS, 241-242, 333

Data, definition, 55-56

Data entry, 55-56, 59-63, 76-79. See
also INPUT; LINE INPUT

Data fields, 56-59, 317

Data files, 84-88. See also Cassette data
files; Random access data files;
Sequential data files

Dataset, 89, 100, 225, 317

DATA statements, 8-9, 11, 22-25, 30,
97

DESTROY, 312

DIM (dimension), 7, 21, 297, 300

Direct assignment statements, 19-22. See
also LET

Disk, 85-87

Diskette, 85-87

Double density disk, 86

Double precision numbers, 87-89

Dual cassettes, 195, 196, 202-203

Dummy data, 201-202

ELSE, 298-300

END, 30, 67

End of file marker, 101. See also EOF

EOF, 104-105, 109, 135-136, 312, 320,
333

FIELD, 227-230, 333
File pointer, see Pointer
FOR-NEXT loops, 12, 14, 19, 49-50

GET, 237-238, 270, 333

GOSUB, 9-10, 14, 30,51, 67, 79, 157

GOTO, 5-6, 14, 29, 30. See also ON. ..
GOTO

IF. . .THEN, 12, 13, 29-36, 79, 298-300.
See also Data entry

Initializing, 6-8, 90-91

INPUT, 25-28, 56, 84, 154-156, 298.
See also LINE INPUT

INPUT #, 102-104, 138, 197-198, 333

INSTR, 44-47, 48, 300-302

INT, 79, 100

Integer numbers, 87-88, 92-93

KILL, 105-106, 143

305

306 INDEX

LEFTS, 43-44, 78, 181, 333

LEN, 37-39, 65-69, 74-76, 78-79, 303-
304, 333

LET, 12-13. See also Direct assignment
statements

LINE INPUT, 25, 27-28, 333. Seealso
INPUT

Line numbers, 10-11

LIST, 6, 85

LOAD, 85

LOF, 238-240, 248, 256, 333

LPRINT, 178-184, 315

LSET, 232-234, 333

Merging files, 165-175
MIDS$, 39-43, 46, 68-70, 74-76, 181, 333
MKDS$, 241-242, 333
MKI$, 241-242, 333
MKSS$, 241-242, 333
Modules, 3-4, 8-10
introductory, 6, 21
Multiple statement lines, 12, 50-51, 298-
299

Null strings, 65, 79, 154-157. See also
INPUT
Numeric variables, see Variables

ON. . .GOTO, 47-49
OPEN, 90-93, 95, 106, 110, 226, 311,
333

Padding strings, 60-64
PET, 195
Pointer, in DATA statements, 24
in random access data files, 234-238,
248,254,267, 270
in sequential data files, 104-105, 141,
148, 149, 175-176, 271, 313-314
Press enter to continue, 154-157
Print formating, see PRINT USING

PRINT #, 95-100, 106, 138, 196-198,
315,334

PRINT USING, 8-9, 13

Prompts, 6, 298

PUT, 234-237, 270, 333

Quad density disk, 86

Random access data files, 89-90, 224-284

READ, 22-25, 30, 84

READ #, 311, 318

Record, 86, 88-89, 225-227, 236, 248,
254, 316-317

REMARK, 4-5,6, 11, 14

RETURN, see GOSUB

RIGHTS, 43-44, 46, 181, 334

RSET, 232-234, 334

SAVE, 85

Serial data files, see Sequential data files

Sequential data files, 84-224, 251-255

Single density disk, 86

Single precision numbers, 87-89

STOP, 30, 67

String comparisons, see IF. . THEN

Strings, see Variables

STRS$, 73-74, 275,334

Subroutines, see GOSUB

Substrings, 39-47, 300-302, 306-308.
See also MID$; LEFTS$, RIGHTS;
INSTR

Timing mechanism, disabling, 197
TYP, 311-312

Updating, 93

VAL, 27,70-73,79, 169-171, 334
Variables, 7, 18, 229

WRITE #, 95-100, 106, 311, 318, 334

NOTES

o-80
ATA FILE
GRAMMING

By LeRoy Finkel and Jerald R. Brown

D)

This easy-to-follow book is a self-instructional manual designed to show you—in
comprehensive and comprehensible detail —how to program and maintain data files on
microcomputers, and how to write data file programs that are readable, efficient and useful.

Using TRS-80 BASIC, this clear, nontechnical book leads you at a comfortable pace through
each step, with dozens of sample programs and practical advice to smooth your way. You'll
learn how to use the disk file capability of your microcomputer to keep track of billings,
customer inventory, and expenses; to catalog material and maintain mailing lists; to process
numerical and statistical information, and much more. And you’ll be able to write your own
programs . . . modify commercial programs you’'ve purchased . . . even adapt programs using
data files you've found in computing magazines, to fit your specific needs.

All you need is an elementary knowledge of BASIC, access to a computer, and this unique,
seli-paced text to teach yourself how to program and maintain data files. Objectives and self-
tests tell how you’re doing and allow you to skip ahead if you’re ready. Frequent reviews and
practice exercises reinforce what you learn.

LeRoy Finkel and Jerald R. Brown are well-known writers and educational consultants on
computer subjects.

Radie fhaek

A DIVISION OF TANDY CORPORATION 0 471 86540-0

